Name: CAREL Timotheá
Exercise 1. Let

$$
\begin{aligned}
f: \mathbb{R}^{2} & \longrightarrow \mathbb{R} \\
(x, y) & \longmapsto x y-2 x-y .
\end{aligned}
$$

Determine the directional derivative of f at $(1,1)$ in the direction $(1,2)$. No justifications required.

$$
\nabla_{(1,2)} f(1,1)=-1
$$

Exercise 2. Let $\left(E,\|\cdot\|_{E}\right)$ and $\left(F,\|\cdot\|_{F}\right)$ be two normed vector spaces, let U be an open subset of E, let $g: U \rightarrow F$ be a function, and let $q_{0} \in U$.

1. Let $w \in E$. Recall the definition of the directional derivative of g at q_{0} in the direction w (assuming that it exists):

$$
\nabla_{w} g\left(q_{0}\right)=\lim _{t \rightarrow 0} \frac{g\left(q_{0}+t w\right)-g\left(q_{0}\right)}{t}
$$

2. We now assume that g is differentiable at q_{0}. We know that all the directional derivatives of g at q_{0} exist. Give the relation between the directional derivatives of g at q_{0} and the differential of g at q_{0}. No justifications required.

Exercise 3. Let f be the function defined by

$$
\begin{aligned}
f: \mathbb{R}^{2} & \longrightarrow \mathbb{R} \\
(y, x) & \longmapsto y \mathrm{e}^{x}+x
\end{aligned}
$$

There are no typos in the definition of f ! Determine the first order partial derivatives of f at $(0,1)$ (you're given that they exist). No justifications required.

$$
\begin{aligned}
& \partial_{1} f(0,1)=e^{1}=e \\
& \partial_{2} f(0,1)=0 e^{1}+1=1 \\
& \partial_{1} f(y, x)=e^{x} \\
& \partial_{2} f(y, x)=y e^{x}+1
\end{aligned}
$$

