Exercise 1.

1. The function $t \mapsto t^{5} \mathrm{e}^{-t^{2}}$ is continuous on $[0,+\infty)$ hence I_{1} is improper at $+\infty$ only. Now,

$$
t^{7} \mathrm{e}^{-t^{2}} \underset{t \rightarrow+\infty}{\longrightarrow} 0
$$

hence there exists $A>0$ such that

$$
\forall t \in[A,+\infty), 0 \leq t^{7} \mathrm{e}^{-t^{2}} \leq 1
$$

i.e.,

$$
\forall t \in[A,+\infty), 0 \leq t^{5} \mathrm{e}^{-t^{2}} \leq \frac{1}{t^{2}}
$$

and we conclude, by the Comparison Test, that I_{1} converges.
2. The function $t \mapsto \ln \left(1+\frac{1}{t^{2}}\right)$ is continuous on $[1,+\infty)$, hence I_{2} is improper at $+\infty$ only. Let $A>1$. By an integration by parts (differentiating the \ln and antidifferentiating 1):

$$
\begin{aligned}
\int_{1}^{A} \ln \left(1+\frac{1}{t^{2}}\right) \mathrm{d} t & =\left[t \ln \left(2+\frac{1}{t^{2}}\right)\right]_{t=1}^{t=A}-\int_{1}^{A} t \frac{-2 / t^{3}}{1+1 / t^{2}} \mathrm{~d} t \\
& =A \ln \left(1+\frac{1}{A^{2}}\right)-\ln (2)+2 \int_{1}^{A} \frac{1}{1+t^{2}} \mathrm{~d} t \\
& =A \ln \left(1+\frac{1}{A^{2}}\right)-\ln (2)+2 \arctan (A)-2 \arctan (1) \\
& =A \ln \left(1+\frac{1}{A^{2}}\right)-\ln (2)+2 \arctan (A)-\frac{\pi}{2} \\
& =-\ln (2)+\frac{\pi}{2}
\end{aligned}
$$

Exercise 2.

1. The function $x \mapsto \frac{1}{\sqrt{x}+x^{3 / 2}}$ is continuous on $(0,+\infty)$ hence I is improper at 0^{+}and at $+\infty$. Now,

$$
\frac{1}{\sqrt{x}+x^{3 / 2}} \underset{x \rightarrow 0^{+}}{\sim} \frac{1}{\sqrt{x}}=\frac{1}{x^{1 / 2}}>0
$$

hence by the Equivalent Test, I converges at 0^{+}, and

$$
\frac{1}{\sqrt{x}+x^{3 / 2}} \underset{x \rightarrow+\infty}{\sim} \frac{1}{x^{3 / 2}}>0
$$

hence by the Equivalent Test, I converges at $+\infty$. Hence I converges.
2. Let $A, B \in \mathbb{R}$ such that $0<A<B$. We use the substitution $u=\sqrt{x}$, so that $\mathrm{d} x=2 u \mathrm{~d} u$:

$$
\int_{A}^{B} \frac{\mathrm{~d} x}{\sqrt{x}+x^{3 / 2}}=\int_{\sqrt{A}}^{\sqrt{B}} \frac{2 u \mathrm{~d} u}{u+u^{3}}=\int_{\sqrt{A}}^{\sqrt{B}} \frac{2 \mathrm{~d} u}{1+u^{2}}=2 \arctan \sqrt{B}-2 \arctan \sqrt{A} \underset{A \rightarrow 0^{+}, B \rightarrow+\infty}{\longrightarrow} \pi
$$

Hence $I=\pi$.
3. - If $\alpha<1 / 2$ then

$$
\frac{1}{\sqrt{x}+x^{\alpha}} \underset{x \rightarrow+\infty}{\sim} \frac{1}{x^{1 / 2}}>0
$$

hence, by the Equivalent Test (and Riemann at $+\infty$), I_{α} diverges.

- If $\alpha=1 / 2$ then

$$
\frac{1}{\sqrt{x}+x^{\alpha}}=\frac{1}{2 x^{1 / 2}}
$$

and by Riemann at $+\infty, I_{\alpha}$ diverges too.

- If $\alpha>1 / 2$ then

$$
\frac{1}{\sqrt{x}+x^{\alpha}} \underset{x \rightarrow 0^{+}}{\sim} \frac{1}{\sqrt{x}}>0,
$$

hence by the Equivalent Test, I_{α} converges at 0^{+}and

$$
\frac{1}{\sqrt{x}+x^{\alpha}} \underset{x \rightarrow+\infty}{\sim} \frac{1}{x^{\alpha}}>0
$$

and we conclude, by the Equivalent Test, that I_{α} converges at $+\infty$ if and only if $\alpha>1$.
Conclusion: I_{α} converges if and only if $\alpha>1$.

Exercise 3.

1. The largest interval with endpoint $+\infty$ where the function $t \mapsto \ln \left(\cos \left(\frac{1}{t}\right)\right)$ is continuous is $(2 / p i,+\infty)$.

Hence:

$$
I_{a} \text { is improper at }+\infty \text { only } \Longleftrightarrow a>\frac{2}{\pi}
$$

2. Since $\cos (1 / t) \underset{t \rightarrow+\infty}{\longrightarrow} 1$ we obtain, by the well-known equivalent $\ln (X) \underset{X \rightarrow 1}{\sim} X-1$:

$$
\ln \left(\cos \left(\frac{1}{t}\right)\right) \underset{t \rightarrow+\infty}{\sim} \cos \left(\frac{1}{t}\right)-1 \underset{t \rightarrow+\infty}{\sim}-\frac{1}{2 t^{2}}<0
$$

Hence by the Equivalent Test (and Riemann at $+\infty$), I_{α} converges.

Exercise 4.

1. Let $n \geq 1$. The function $t \mapsto \frac{1}{t^{n}(1+t)}$ is continuous on $[1,+\infty)$, hence I_{n} is only improper at $+\infty$. Now,

$$
\frac{1}{t^{n}(1+t)} \underset{t \rightarrow+\infty}{\sim} \frac{1}{t^{n+1}}>0
$$

By the Equivalent Test (and Riemann at $+\infty$), I_{n} converges (since $n+1>1$ since $n \geq 1>0$).
To compute the value of I_{1} we use the following partial fraction decomposition:

$$
\frac{1}{T(1+T)}=\frac{1}{T}-\frac{1}{1+T}
$$

Let $X>1$. Then

$$
\int_{1}^{X} \frac{\mathrm{~d} t}{t(1+t)}=\int_{1}^{X} \frac{\mathrm{~d} t}{t}-\int_{1}^{X} \frac{\mathrm{~d} t}{1+t}=\ln (X)-\ln (X+1)+\ln (2)=\ln \left(\frac{X}{X+1}\right)+\ln (2) \underset{X \rightarrow+\infty}{\longrightarrow} \ln (2)
$$

Hence $I_{1}=\ln (2)$.
2. Let $t \in[1,+\infty)$. Then:

$$
2 \leq 1+t \leq t+t=2 t
$$

hence

$$
2 t^{n} \leq t^{n}(1+t) \leq t+t=2 t^{n+1}
$$

hence

$$
\frac{1}{2 t^{n+1}} \leq \frac{1}{t^{n}(1+t)} \leq \frac{1}{2 t^{n}}
$$

Now for $\alpha>1$,

$$
\int_{1}^{+\infty} \frac{\mathrm{d} t}{t^{\alpha}}=\frac{1}{a-1}
$$

so that (since $n \geq 2>1$):

$$
\frac{1}{2 n}=\int_{1}^{+\infty} \frac{\mathrm{d} t}{2 t^{n+1}} \leq I_{n}=\int_{1}^{+\infty} \frac{\mathrm{d} t}{t^{n}(1+t)} \leq \int_{1}^{+\infty} \frac{\mathrm{d} t}{2 t^{n}}=\frac{1}{2(n-1)}
$$

3. a) Let $n \geq 1$ and $t \in[1,+\infty)$. Then

$$
\frac{1}{t^{n}(1+t)}+\frac{1}{t^{n+1}(1+t)}=\frac{t+1}{t^{n+1}(1+t)}=\frac{1}{t^{n+1}}
$$

Hence:

$$
I_{n}+I_{n+1}=\int_{1}^{+\infty} \frac{\mathrm{d} t}{t^{n+1}}=\frac{1}{n}
$$

b) Let $n \geq 2$. Then:

$$
\begin{aligned}
\sum_{k=1}^{n-1} \frac{(-1)^{k-1}}{k} & =\sum_{k=1}^{n-1}(-1)^{k-1}\left(I_{k}+I_{k+1}\right) \\
& =\sum_{k=1}^{n-1}(-1)^{k-1} I_{k}+\sum_{k=1}^{n-1}(-1)^{k-1} I_{k+1} \\
& =\sum_{k=1}^{n-1}(-1)^{k-1} I_{k}+\sum_{k=2}^{n}(-1)^{k} I_{k} \quad \text { shift of index in the second sum } \\
& =\sum_{k=1}^{n-1}(-1)^{k-1} I_{k}-\sum_{k=2}^{n}(-1)^{k-1} I_{k} \\
& =I_{1}-(-1)^{n-1} I_{n}
\end{aligned}
$$

hence the result.
4. From Question 2 and the Squeeze Theorem we conclude that $I_{n} \underset{n \rightarrow+\infty}{\longrightarrow} 0$, hence

$$
\ell=I_{1}=\ln (2)
$$

Exercise 5. Let

$$
\begin{aligned}
\varphi: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
(x, y) & \longmapsto(2 x+y, x+y) .
\end{aligned}
$$

Clearly φ is linear and

$$
\forall u \in \mathbb{R}^{2}, N(u)=\|\varphi(u)\|_{\infty}
$$

This already shows that N satisfies the triangle inequality and the positive homogeneity (and that N takes values in \mathbb{R}_{+}). In order to show that N also satisfy the separation property, we only need to show that φ is injective: the matrix of φ in the standard basis of \mathbb{R}^{2} is:

$$
[\varphi]_{\mathrm{std}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

the determinant of which is $\operatorname{det} \varphi=1 \neq 0$, hence φ is a bijection.
We know that the closed ball \bar{B}_{N} associated with N is obtained as:

$$
\varphi^{-1}\left(\bar{B}_{\infty}\right)
$$

where \bar{B}_{∞} is the unit ball associated with the ∞-norm.
We now compute the matrix of φ^{-1} :

$$
\left[\varphi^{-1}\right]_{\mathrm{std}}=[\varphi]_{\mathrm{std}}^{-1}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)
$$

The images of (two of) the vertices of \bar{B}_{∞} by φ^{-1} are hence:

$$
\varphi^{-1}(1,1)=(0,1), \quad \varphi^{-1}(1,-1)=(-2,-3)
$$

From this we can deduce \bar{B}_{∞} (see Figure 11.

Figure 1. Closed unit ball for the norm N of Exercise 5

Exercise 6.

1. Let $n \in \mathbb{N}$. Then:

$$
\left\|u_{n}-0_{E}\right\|_{1}=\left\|u_{n}\right\|_{1}=\int_{0}^{1}\left|u_{n}(t)\right| \mathrm{d} t=\int_{0}^{1} \sqrt{n} t^{n} \mathrm{~d} t=\frac{\sqrt{n}}{n+1}
$$

hence $\left\|u_{n}-0_{E}\right\|_{1} \underset{n \rightarrow+\infty}{\longrightarrow} 0$, hence $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges to 0_{E} for the 1-norm.
2. Let $n \in \mathbb{N}$. Then:

$$
\left\|u_{n}-0_{E}\right\|_{2}=\left\|u_{n}\right\|_{2}=\int_{0}^{1} u_{n}(t)^{2} \mathrm{~d} t=\int_{0}^{1} n t^{2 n} \mathrm{~d} t=\frac{n}{2 n+1},
$$

hence $\left\|u_{n}-0_{E}\right\|_{2} \underset{n \rightarrow+\infty}{\rightarrow} 0$, hence $\left(u_{n}\right)_{n \in \mathbb{N}}$ doesn't converge to 0_{E} for the 2-norm.

