

SCAN 2 — Solution of Math Test #1

Romaric Pujol, romaric.pujol@insa-lyon.fr

Exercise 1.

1. The function $t \mapsto t^5 e^{-t^2}$ is continuous on $[0, +\infty)$ hence I_1 is improper at $+\infty$ only. Now,

$$t^7 \mathrm{e}^{-t^2} \xrightarrow[t \to +\infty]{} 0$$

hence there exists A > 0 such that

$$\forall t \in [A, +\infty), \ 0 \le t^7 e^{-t^2} \le 1,$$

i.e.,

$$\forall t \in [A, +\infty), \ 0 \le t^5 e^{-t^2} \le \frac{1}{t^2},$$

and we conclude, by the Comparison Test, that ${\cal I}_1$ converges.

2. The function $t \mapsto \ln\left(1 + \frac{1}{t^2}\right)$ is continuous on $[1, +\infty)$, hence I_2 is improper at $+\infty$ only. Let A > 1. By an integration by parts (differentiating the ln and antidifferentiating 1):

$$\int_{1}^{A} \ln\left(1 + \frac{1}{t^{2}}\right) dt = \left[t\ln\left(2 + \frac{1}{t^{2}}\right)\right]_{t=1}^{t=A} - \int_{1}^{A} t \frac{-2/t^{3}}{1 + 1/t^{2}} dt$$
$$= A\ln\left(1 + \frac{1}{A^{2}}\right) - \ln(2) + 2\int_{1}^{A} \frac{1}{1 + t^{2}} dt$$
$$= A\ln\left(1 + \frac{1}{A^{2}}\right) - \ln(2) + 2\arctan(A) - 2\arctan(1)$$
$$= A\ln\left(1 + \frac{1}{A^{2}}\right) - \ln(2) + 2\arctan(A) - \frac{\pi}{2}$$
$$= -\ln(2) + \frac{\pi}{2}$$

Exercise 2.

1. The function $x \mapsto \frac{1}{\sqrt{x} + x^{3/2}}$ is continuous on $(0, +\infty)$ hence I is improper at 0^+ and at $+\infty$. Now,

$$\frac{1}{\sqrt{x}+x^{3/2}} \underset{x \to 0^+}{\sim} \frac{1}{\sqrt{x}} = \frac{1}{x^{1/2}} > 0,$$

hence by the Equivalent Test, I converges at 0^+ , and

$$\frac{1}{\sqrt{x} + x^{3/2}} \underset{x \to +\infty}{\sim} \frac{1}{x^{3/2}} > 0,$$

hence by the Equivalent Test, I converges at $+\infty$. Hence I converges.

2. Let $A, B \in \mathbb{R}$ such that 0 < A < B. We use the substitution $u = \sqrt{x}$, so that dx = 2u du:

$$\int_{A}^{B} \frac{\mathrm{d}x}{\sqrt{x} + x^{3/2}} = \int_{\sqrt{A}}^{\sqrt{B}} \frac{2u\,\mathrm{d}u}{u + u^3} = \int_{\sqrt{A}}^{\sqrt{B}} \frac{2\,\mathrm{d}u}{1 + u^2} = 2\arctan\sqrt{B} - 2\arctan\sqrt{A} \underset{A \to 0^+, B \to +\infty}{\longrightarrow} \pi.$$

Hence $I = \pi$.

3. • If $\alpha < 1/2$ then

$$\frac{1}{\sqrt{x}+x^{\alpha}} \underset{x \to +\infty}{\sim} \frac{1}{x^{1/2}} > 0$$

hence, by the Equivalent Test (and Riemann at $+\infty$), I_{α} diverges.

• If $\alpha = 1/2$ then

$$\frac{1}{\sqrt{x} + x^{\alpha}} = \frac{1}{2x^{1/2}}$$

and by Riemann at $+\infty$, I_{α} diverges too.

• If $\alpha > 1/2$ then

$$\frac{1}{\sqrt{x}+x^{\alpha}} \underset{x \to 0^+}{\sim} \frac{1}{\sqrt{x}} > 0,$$

hence by the Equivalent Test, I_{α} converges at 0^+ and

$$\frac{1}{\sqrt{x} + x^{\alpha}} \underset{x \to +\infty}{\sim} \frac{1}{x^{\alpha}} > 0$$

and we conclude, by the Equivalent Test, that I_{α} converges at $+\infty$ if and only if $\alpha > 1$. Conclusion: I_{α} converges if and only if $\alpha > 1$.

Exercise 3.

1. The largest interval with endpoint $+\infty$ where the function $t \mapsto \ln\left(\cos\left(\frac{1}{t}\right)\right)$ is continuous is $(2/pi, +\infty)$. Hence:

$$I_a$$
 is improper at $+\infty$ only $\iff a > \frac{2}{\pi}$.

2. Since $\cos(1/t) \xrightarrow[t \to +\infty]{} 1$ we obtain, by the well-known equivalent $\ln(X) \underset{X \to 1}{\sim} X - 1$:

$$\ln\left(\cos\left(\frac{1}{t}\right)\right) \underset{t \to +\infty}{\sim} \cos\left(\frac{1}{t}\right) - 1 \underset{t \to +\infty}{\sim} -\frac{1}{2t^2} < 0.$$

Hence by the Equivalent Test (and Riemann at $+\infty$), I_{α} converges.

Exercise 4.

1. Let $n \ge 1$. The function $t \mapsto \frac{1}{t^n(1+t)}$ is continuous on $[1, +\infty)$, hence I_n is only improper at $+\infty$. Now,

$$\frac{1}{t^n(1+t)} \underset{t \to +\infty}{\sim} \frac{1}{t^{n+1}} > 0.$$

By the Equivalent Test (and Riemann at $+\infty$), I_n converges (since n + 1 > 1 since $n \ge 1 > 0$). To compute the value of I_1 we use the following partial fraction decomposition:

$$\frac{1}{T(1+T)} = \frac{1}{T} - \frac{1}{1+T}$$

Let X > 1. Then

$$\int_{1}^{X} \frac{\mathrm{d}t}{t(1+t)} = \int_{1}^{X} \frac{\mathrm{d}t}{t} - \int_{1}^{X} \frac{\mathrm{d}t}{1+t} = \ln(X) - \ln(X+1) + \ln(2) = \ln\left(\frac{X}{X+1}\right) + \ln(2) \underset{X \to +\infty}{\longrightarrow} \ln(2).$$

Hence $I_1 = \ln(2)$.

2. Let $t \in [1, +\infty)$. Then:

$$2 \leq 1+t \leq t+t = 2t$$

hence

$$2t^n \le t^n (1+t) \le t+t = 2t^{n+1}$$

hence

$$\frac{1}{2t^{n+1}} \le \frac{1}{t^n(1+t)} \le \frac{1}{2t^n}.$$

Now for $\alpha > 1$,

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{a-1},$$

so that (since $n \ge 2 > 1$):

$$\frac{1}{2n} = \int_{1}^{+\infty} \frac{\mathrm{d}t}{2t^{n+1}} \le I_n = \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^n(1+t)} \le \int_{1}^{+\infty} \frac{\mathrm{d}t}{2t^n} = \frac{1}{2(n-1)}$$

3. a) Let $n \ge 1$ and $t \in [1, +\infty)$. Then

$$\frac{1}{t^n(1+t)} + \frac{1}{t^{n+1}(1+t)} = \frac{t+1}{t^{n+1}(1+t)} = \frac{1}{t^{n+1}}$$

Hence:

$$I_n + I_{n+1} = \int_1^{+\infty} \frac{\mathrm{d}t}{t^{n+1}} = \frac{1}{n}$$

b) Let $n \ge 2$. Then:

$$\sum_{k=1}^{n-1} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{n-1} (-1)^{k-1} (I_k + I_{k+1})$$
$$= \sum_{k=1}^{n-1} (-1)^{k-1} I_k + \sum_{k=1}^{n-1} (-1)^{k-1} I_{k+1}$$
$$= \sum_{k=1}^{n-1} (-1)^{k-1} I_k + \sum_{k=2}^{n} (-1)^k I_k$$
$$= \sum_{k=1}^{n-1} (-1)^{k-1} I_k - \sum_{k=2}^{n} (-1)^{k-1} I_k$$
$$= I_1 - (-1)^{n-1} I_n,$$

shift of index in the second sum

hence the result.

4. From Question 2 and the Squeeze Theorem we conclude that $I_n \xrightarrow[n \to +\infty]{} 0$, hence

$$\ell = I_1 = \ln(2).$$

Exercise 5. Let

$$\varphi : \begin{array}{cc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (2x+y,x+y) \end{array}$$

Clearly φ is linear and

$$\forall u \in \mathbb{R}^2, \ N(u) = \left\|\varphi(u)\right\|_{\infty}.$$

This already shows that N satisfies the triangle inequality and the positive homogeneity (and that N takes values in \mathbb{R}_+). In order to show that N also satisfy the separation property, we only need to show that φ is injective: the matrix of φ in the standard basis of \mathbb{R}^2 is:

$$[\varphi]_{\rm std} = \begin{pmatrix} 2 & 1\\ 1 & 1 \end{pmatrix},$$

the determinant of which is det $\varphi = 1 \neq 0$, hence φ is a bijection. We know that the closed ball \overline{B}_N associated with N is obtained as:

 $\varphi^{-1}(\overline{B}_{\infty})$

where \overline{B}_{∞} is the unit ball associated with the ∞ -norm. We now compute the matrix of φ^{-1} :

$$[\varphi^{-1}]_{\text{std}} = [\varphi]_{\text{std}}^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$

The images of (two of) the vertices of \overline{B}_{∞} by φ^{-1} are hence:

$$\varphi^{-1}(1,1) = (0,1), \qquad \varphi^{-1}(1,-1) = (-2,-3).$$

From this we can deduce \overline{B}_{∞} (see Figure 1).

Figure 1. Closed unit ball for the norm N of Exercise 5 $\,$

Exercise 6.

1. Let $n \in \mathbb{N}$. Then:

$$||u_n - 0_E||_1 = ||u_n||_1 = \int_0^1 |u_n(t)| \, \mathrm{d}t = \int_0^1 \sqrt{n} t^n \, \mathrm{d}t = \frac{\sqrt{n}}{n+1}$$

hence $||u_n - 0_E||_1 \xrightarrow[n \to +\infty]{} 0$, hence $(u_n)_{n \in \mathbb{N}}$ converges to 0_E for the 1-norm.

2. Let $n \in \mathbb{N}$. Then:

$$|u_n - 0_E||_2 = ||u_n||_2 = \int_0^1 u_n(t)^2 dt = \int_0^1 nt^{2n} dt = \frac{n}{2n+1}$$

hence $||u_n - 0_E||_2 \xrightarrow[n \to +\infty]{} 0$, hence $(u_n)_{n \in \mathbb{N}}$ doesn't converge to 0_E for the 2-norm.