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Exercise 1.

1. The function t 7→ t5e−t
2

is continuous on [0,+∞) hence I1 is improper at +∞ only. Now,

t7e−t
2

−→
t→+∞

0

hence there exists A > 0 such that

∀t ∈ [A,+∞), 0 ≤ t7e−t
2

≤ 1,

i.e.,

∀t ∈ [A,+∞), 0 ≤ t5e−t
2

≤ 1

t2
,

and we conclude, by the Comparison Test, that I1 converges.

2. The function t 7→ ln

(
1 +

1

t2

)
is continuous on [1,+∞), hence I2 is improper at +∞ only. Let A > 1. By

an integration by parts (differentiating the ln and antidifferentiating 1):∫ A

1

ln

(
1 +

1

t2

)
dt =

[
t ln

(
2 +

1

t2

)]t=A
t=1

−
∫ A

1

t
−2/t3

1 + 1/t2
dt

= A ln

(
1 +

1

A2

)
− ln(2) + 2

∫ A

1

1

1 + t2
dt

= A ln

(
1 +

1

A2

)
− ln(2) + 2 arctan(A)− 2 arctan(1)

= A ln

(
1 +

1

A2

)
− ln(2) + 2 arctan(A)− π

2

= − ln(2) +
π

2

Exercise 2.

1. The function x 7→ 1√
x+ x3/2

is continuous on (0,+∞) hence I is improper at 0+ and at +∞. Now,

1√
x+ x3/2

∼
x→0+

1√
x
=

1

x1/2
> 0,

hence by the Equivalent Test, I converges at 0+, and

1√
x+ x3/2

∼
x→+∞

1

x3/2
> 0,

hence by the Equivalent Test, I converges at +∞. Hence I converges.

2. Let A,B ∈ R such that 0 < A < B. We use the substitution u =
√
x, so that dx = 2udu:∫ B

A

dx√
x+ x3/2

=

∫ √B
√
A

2udu

u+ u3
=

∫ √B
√
A

2 du

1 + u2
= 2arctan

√
B − 2 arctan

√
A −→
A→0+, B→+∞

π.

Hence I = π.

3. • If α < 1/2 then
1√

x+ xα
∼

x→+∞

1

x1/2
> 0

hence, by the Equivalent Test (and Riemann at +∞), Iα diverges.



• If α = 1/2 then
1√

x+ xα
=

1

2x1/2

and by Riemann at +∞, Iα diverges too.
• If α > 1/2 then

1√
x+ xα

∼
x→0+

1√
x
> 0,

hence by the Equivalent Test, Iα converges at 0+ and

1√
x+ xα

∼
x→+∞

1

xα
> 0,

and we conclude, by the Equivalent Test, that Iα converges at +∞ if and only if α > 1.
Conclusion: Iα converges if and only if α > 1.

Exercise 3.

1. The largest interval with endpoint +∞ where the function t 7→ ln

(
cos

(
1

t

))
is continuous is (2/pi,+∞).

Hence:
Ia is improper at +∞ only ⇐⇒ a >

2

π
.

2. Since cos(1/t) −→
t→+∞

1 we obtain, by the well-known equivalent ln(X) ∼
X→1

X − 1:

ln

(
cos

(
1

t

))
∼

t→+∞
cos

(
1

t

)
− 1 ∼

t→+∞
− 1

2t2
< 0.

Hence by the Equivalent Test (and Riemann at +∞), Iα converges.

Exercise 4.

1. Let n ≥ 1. The function t 7→ 1

tn(1 + t)
is continuous on [1,+∞), hence In is only improper at +∞. Now,

1

tn(1 + t)
∼

t→+∞

1

tn+1
> 0.

By the Equivalent Test (and Riemann at +∞), In converges (since n+ 1 > 1 since n ≥ 1 > 0).
To compute the value of I1 we use the following partial fraction decomposition:

1

T (1 + T )
=

1

T
− 1

1 + T

Let X > 1. Then∫ X

1

dt

t(1 + t)
=

∫ X

1

dt

t
−
∫ X

1

dt

1 + t
= ln(X)− ln(X + 1) + ln(2) = ln

(
X

X + 1

)
+ ln(2) −→

X→+∞
ln(2).

Hence I1 = ln(2).

2. Let t ∈ [1,+∞). Then:
2 ≤ 1 + t ≤ t+ t = 2t

hence
2tn ≤ tn(1 + t) ≤ t+ t = 2tn+1

hence
1

2tn+1
≤ 1

tn(1 + t)
≤ 1

2tn
.

Now for α > 1, ∫ +∞

1

dt

tα
=

1

a− 1
,

so that (since n ≥ 2 > 1):

1

2n
=

∫ +∞

1

dt

2tn+1
≤ In =

∫ +∞

1

dt

tn(1 + t)
≤
∫ +∞

1

dt

2tn
=

1

2(n− 1)
.



3. a) Let n ≥ 1 and t ∈ [1,+∞). Then

1

tn(1 + t)
+

1

tn+1(1 + t)
=

t+ 1

tn+1(1 + t)
=

1

tn+1
.

Hence:

In + In+1 =

∫ +∞

1

dt

tn+1
=

1

n
.

b) Let n ≥ 2. Then:

n−1∑
k=1

(−1)k−1

k
=

n−1∑
k=1

(−1)k−1(Ik + Ik+1)

=

n−1∑
k=1

(−1)k−1Ik +
n−1∑
k=1

(−1)k−1Ik+1

=

n−1∑
k=1

(−1)k−1Ik +
n∑
k=2

(−1)kIk shift of index in the second sum

=

n−1∑
k=1

(−1)k−1Ik −
n∑
k=2

(−1)k−1Ik

= I1 − (−1)n−1In,

hence the result.

4. From Question 2 and the Squeeze Theorem we conclude that In −→
n→+∞

0, hence

` = I1 = ln(2).

Exercise 5. Let
ϕ : R2 −→ R2

(x, y) 7−→ (2x+ y, x+ y).

Clearly ϕ is linear and
∀u ∈ R2, N(u) =

∥∥ϕ(u)∥∥∞.
This already shows that N satisfies the triangle inequality and the positive homogeneity (and that N takes
values in R+). In order to show that N also satisfy the separation property, we only need to show that ϕ is
injective: the matrix of ϕ in the standard basis of R2 is:

[ϕ]std =

(
2 1
1 1

)
,

the determinant of which is detϕ = 1 6= 0, hence ϕ is a bijection.
We know that the closed ball BN associated with N is obtained as:

ϕ−1
(
B∞

)
where B∞ is the unit ball associated with the ∞-norm.
We now compute the matrix of ϕ−1:

[ϕ−1]std = [ϕ]−1std =

(
1 −1
−1 2

)
.

The images of (two of) the vertices of B∞ by ϕ−1 are hence:

ϕ−1(1, 1) = (0, 1), ϕ−1(1,−1) = (−2,−3).

From this we can deduce B∞ (see Figure 1).
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Figure 1. Closed unit ball for the norm N of Exercise 5

Exercise 6.

1. Let n ∈ N. Then:

‖un − 0E‖1 = ‖un‖1 =

∫ 1

0

∣∣un(t)∣∣dt = ∫ 1

0

√
ntn dt =

√
n

n+ 1

hence ‖un − 0E‖1 −→
n→+∞

0, hence (un)n∈N converges to 0E for the 1-norm.

2. Let n ∈ N. Then:

‖un − 0E‖2 = ‖un‖2 =

∫ 1

0

un(t)
2 dt =

∫ 1

0

nt2n dt =
n

2n+ 1
,

hence ‖un − 0E‖2 X−→
n→+∞

0, hence (un)n∈N doesn’t converge to 0E for the 2-norm.


