SCAN 2 - Solution of Math Test \#2
November 30, 2020
Romaric Pujol, romaric.pujol@insa-lyon.fr

Exercise 1.

- Let $t \in \mathbb{R}^{*}$. Then

$$
\frac{f(t, 0)-f(0,0)}{t}=\frac{\frac{t^{3}+0}{t^{2}+0}-0}{t}=1 \underset{t \rightarrow 0}{\longrightarrow} 1,
$$

hence $\partial_{1} f(0,0)$ exists and its value is 1 .

- Let $t \in \mathbb{R}^{*}$. Then:

$$
\frac{f(0, t)-f(0,0)}{t}=\frac{\frac{0+t}{0+t^{2}}-0}{t}=\frac{1}{t^{3}},
$$

the limit of which as $t \rightarrow 0$ doesn't exist. Hence $\partial_{2} f(0,0)$ doesn't exist.
Since $\partial_{2} f(0,0)$ doesn't exist, we can conclude that f is not differentiable at $(0,0)$.
Exercise 2. Since $U=\mathbb{R}^{2} \backslash\{(0,0)\}$ is an open set and the expression defining f there is continuous, f is continuous on U. We now address the continuity of f at $(0,0)$: let $(x, y) \in U$ (notice that U is a punctured neighborhood of $(0,0))$. Then:

$$
|f(x)|=\left|\frac{x^{2} y+x y^{2}}{x^{2}+2 y^{2}}\right| \leq \frac{|x|^{2}|y|+|x||y|^{2}}{2 x^{2}+2 y^{2}} \leq \frac{2\|(x, y)\|_{2}^{3}}{2\|(x, y)\|_{2}^{2}}=\|(x, y)\|_{2} \underset{\|(x, y)\|_{2} \rightarrow 0}{ } 0,
$$

hence f is also continuous at $(0,0)$.

Exercise 3.

$$
\begin{aligned}
& \partial_{1} g(x, y)=u(x y, 2 x+f(y))+x y \partial_{1} u(x y, 2 x+f(y))+2 x \partial_{2} u(x y, 2 x+f(y)) \\
& \partial_{2} g(x, y)=x^{2} \partial_{1} u(x y, 2 x+f(y))+x f^{\prime}(y) \partial_{2} u(x y, 2 x+f(y))
\end{aligned}
$$

Exercise 4.

1.

$$
J_{(u, v)} \varphi=\left(\begin{array}{cc}
2 u & 2 v \\
v & u
\end{array}\right)
$$

2.

$$
J_{(u, v)} F=J_{\varphi(u, v)} f J_{(u, v)} \varphi .
$$

3. Hence:

$$
\left(\partial_{1} F(u, v) \quad \partial_{2} F(u, v)\right)=\left(\partial_{1} f(\varphi(u, v)) \quad \partial_{2} f(\varphi(u, v))\right)\left(\begin{array}{cc}
2 u & 2 v \\
v & u
\end{array}\right),
$$

from which we deduce:

$$
\begin{aligned}
& \partial_{1} F(u, v)=2 u \partial_{1} f\left(u^{2}+v^{2}, u v\right)+v \partial_{2} f\left(u^{2}+v^{2}, u v\right), \\
& \partial_{2} F(u, v)=2 v \partial_{1} f\left(u^{2}+v^{2}, u v\right)+u \partial_{2} f\left(u^{2}+v^{2}, u v\right) .
\end{aligned}
$$

4. We first determine F : for $(u, v) \in \mathbb{R}^{2}$,

$$
F(u, v)=\left(u^{2}+v^{2}\right)^{2}-4 u^{2} v^{2}=u^{4}-2 u^{2} v^{2}+v^{4}=\left(u^{2}-v^{2}\right)^{2} .
$$

Then

$$
\partial_{1} F(u, v)=4 u\left(u^{2}-v^{2}\right)=4 u^{3}-4 u v^{2} \quad \text { and } \quad \partial_{2} F(u, v)=-4 v\left(u^{2}-v^{2}\right) .
$$

Moreover, for $(x, y) \in \mathbb{R}^{2}$,

$$
\partial_{1} f(x, y)=2 x, \quad \text { and } \quad \partial_{2} f(x, y)=-8 y
$$

so that, for $(u, v) \in \mathbb{R}^{2}$:

$$
\partial_{1} f\left(u^{2}+v^{2}, u v\right)=2\left(u^{2}+v^{2}\right), \quad \text { and } \quad \partial_{2} f\left(u^{2}+v^{2}, u v\right)=-8 u v
$$

and hence:

$$
\begin{aligned}
2 u \partial_{1} f\left(u^{2}+v^{2}, u v\right)+v \partial_{2} f\left(u^{2}+v^{2}+u v\right) & =4 u\left(u^{2}+v^{2}\right)-8 u v^{2} \\
& =4 u^{3}+4 u v^{2}-8 u v^{2} \\
& =4 u^{3}-4 u v^{2} \\
& =\partial_{1} F(u, v),
\end{aligned}
$$

and

$$
2 v \partial_{1} f\left(u^{2}+v^{2}, u v\right)+u \partial_{2} f\left(u^{2}+v^{2}, u v\right)=4 v\left(u^{2}+v^{2}\right)-8 u^{2} v=-4 u^{2} v+4 v^{3}=\partial_{2} F(u, v) .
$$

Exercise 5.

1. a) Let $g \in E$. Then:

$$
|\varphi(g)|=\left|\int_{0}^{1} t f_{0}(t) g(t) \mathrm{d} t\right| \leq \int_{0}^{1} t\left|f_{0}(t)\right||g(t)| \mathrm{d} t \leq \int_{0}^{1} t\left|f_{0}(t)\right|\|g\|_{\infty} \mathrm{d} t \leq\|g\|_{\infty} \int_{0}^{1} t\left|f_{0}(t)\right| \mathrm{d} t \underset{\|g\|_{\infty} \rightarrow 0}{\longrightarrow} 0
$$

hence φ is continuous at 0_{E} and hence φ is continuous.
b) For $t \in[0,1]$,

$$
t|h(t)|^{2} \leq t\|h\|_{\infty}^{2}
$$

hence

$$
\int_{0}^{1} t|h(t)|^{2} \mathrm{~d} t \leq\|h\|_{\infty}^{2} \int_{0}^{1} \mathrm{~d} t=\frac{1}{2}\|h\|_{\infty}
$$

2. Let $h \in E$. Then:

$$
\begin{aligned}
\Phi\left(f_{0}+h\right) & =\int_{0}^{1} t\left(f_{0}(t)+h(t)\right)^{2} \mathrm{~d} t \\
& =\int_{0}^{1} t\left(f_{0}^{2}(t)+2 f_{0}(t) h(t)+h(t)^{2}\right) \mathrm{d} t \\
& \left.=\int_{0}^{1} t f_{0}^{2}(t) \mathrm{d} t+2 \int_{0}^{1} t f_{0}(t) h(t) \mathrm{d} t+\int_{0}^{1} t h(t)^{2}\right) \mathrm{d} t \\
& =\Phi\left(f_{0}\right)+2 \varphi(h)+\int_{0}^{1} t h(t)^{2} \mathrm{~d} t
\end{aligned}
$$

We recognize that the remainder is the term studied in Question 1b, and hence:

$$
\frac{1}{\|h\|_{\infty}}\left|\int_{0}^{1} t h(t)^{2} \mathrm{~d} t\right| \leq \frac{1}{2}\|h\|_{\infty} \underset{\|h\|_{\infty} \rightarrow 0}{\longrightarrow} 0 .
$$

This (together with the fact that φ is continuous) shows that Φ is differentiable f_{0} and that $D_{f_{0}} \Phi=2 \varphi$.
3. The directional derivative of Φ at f_{0} in the direction h can be computed by:

$$
D_{f_{0}} \Phi(h)=2 \varphi(h)=2 \int_{0}^{1} t^{4} \mathrm{~d} t=\frac{2}{5}
$$

