Exercise 1.

- The function $t \mapsto \mathrm{e}^{-t} / \sqrt{t}$ is continuous on $[1,+\infty)$, hence I is improper at $+\infty$. Now,

$$
\forall t \in[1,+\infty), 0 \leq \frac{\mathrm{e}^{-t}}{\sqrt{t}} \leq \mathrm{e}^{-t}
$$

and we know that the improper integral

$$
\int_{1}^{+\infty} \mathrm{e}^{-t} \mathrm{~d} t
$$

is convergent; hence, by the comparison test, I converges.

- The function $t \mapsto t^{\alpha} /((1+t) \sqrt{t})$ is continuous on $(0,+\infty)$, hence J_{α} is improper at 0^{+}and at $+\infty$.
- Convergence at 0^{+}: since

$$
\frac{t^{\alpha}}{(1+t) \sqrt{t}} \underset{t \rightarrow 0^{+}}{\sim} \frac{1}{t^{1 / 2-\alpha}}>0 .
$$

we conclude, by the equivalent test (and by Riemann at a finite point) that J_{α} converges at 0^{+}if and only if $1 / 2-\alpha<1$ i.e., $\alpha>-1 / 2$.

- Convergence at $+\infty$: since

$$
\frac{t^{\alpha}}{(1+t) \sqrt{t}} \underset{t \rightarrow 0^{+}}{\sim} \frac{1}{t^{3 / 2-\alpha}}>0 .
$$

we conclude, by the equivalent test (and by Riemann at $+\infty$) that J_{α} converges at $+\infty$ if and only if $3 / 2-\alpha>1$ i.e., $\alpha<1 / 2$.

Conclusion: J_{α} converges if and only if $\alpha \in(-1 / 2,1 / 2)$.

Exercise 2.

1. Let $x \in \mathbb{R}_{+}^{*}$. Since $x^{3}>0$, the function $t \mapsto 1 /\left(x^{3}+t^{3}\right)$ is continuous on $[0,+\infty)$, hence the improper integral

$$
I_{x}=\int_{0}^{+\infty} \frac{\mathrm{d} t}{x^{3}+t^{3}}
$$

is improper at $+\infty$. Now,

$$
\frac{1}{x^{3}+t^{3}} \underset{t \rightarrow+\infty}{\sim} \frac{1}{t^{3}}>0
$$

hence, by the equivalent test (and by Riemann at $+\infty$ with $\alpha>3$), we conclude that I_{x} converges. Hence f is well defined.
2. Let $x \in \mathbb{R}_{+}^{*}$. Since

$$
\forall t \in[0,+\infty), \frac{1}{x^{3}+t^{3}} \geq 0
$$

(and the endpoints of the integral are in the correct order) we conclude that $f(x) \geq 0$. In fact $f(x)>0$ since the function we're integrating is non-negative, non-nil and continuous.
3. Let $x_{1}, x_{2} \in \mathbb{R}_{+}^{*}$ such that $x_{1}<x_{2}$. Then:

$$
\forall t \in[0,+\infty), \frac{1}{x_{1}^{3}+t^{3}}>\frac{1}{x_{2}^{3}+t^{3}}
$$

and integrating from 0 to $+\infty$ yields $f\left(x_{1}\right)>f\left(x_{2}\right)$ (the strict inequality is obtained by observing that the functions we're integrating are ordered, distinct and continuous). Hence f is decreasing.
4. Let $A>0$. By using the substitution $u=t / x$ we obtain:

$$
\int_{0}^{A} \frac{\mathrm{~d} t}{t^{3}+x^{3}}=\int_{0}^{A / x} \frac{x \mathrm{~d} u}{x^{3}+x^{3} u^{3}}=\frac{1}{x^{2}} \int_{0}^{A / x} \frac{\mathrm{~d} u}{1+u^{3}}
$$

hence (taking the limit as $A \rightarrow+\infty$) yields:

$$
f(x)=\frac{1}{x^{2}} f(1)
$$

5. See Figure 1

Figure 1. Graph of the function f of Exercise 2; f is decreasing and positive. In fact, this graph is of the form $y=f(1) / x^{2}$ with $f(1)>0$.

Exercise 3.

1. We check that N satisfies the conditions to be a norm:

- Separation property: let $P \in E$ such that $N(P)=0$. Then, since the function $t \mapsto t P(t)^{2}$ is non-negative and continuous on $[0,1]$, we conclude that

$$
\forall t \in[0,1], t P(t)^{2}=0
$$

hence

$$
\forall t \in(0,1], P(t)=0
$$

Then the polynomial P has an infinite number of roots, and hence $P=0_{E}$.

- Positive homogeneity: let $P \in E$ and $\lambda \in \mathbb{R}$. Then:

$$
N(\lambda P)=\left(\int_{0}^{1} t \lambda^{2} P(t)^{2} \mathrm{~d} t\right)^{1 / 2}=\left(\lambda^{2} \int_{0}^{1} t P(t)^{2} \mathrm{~d} t\right)^{1 / 2}=|\lambda|\left(\int_{0}^{1} t P(t)^{2} \mathrm{~d} t\right)^{1 / 2}=|\lambda| N(P)
$$

- Triangle inequality: let $P, Q \in E$. Define:

$$
\begin{aligned}
f:[0,1] & \longrightarrow \mathbb{R} & \text { and } & g:[0,1]
\end{aligned} \underbrace{}_{t} \longrightarrow \mathbb{R} 1
$$

Then $f, g \in C([0,1])$, and $N(P+Q)=\|f+g\|_{2}$, and since $\|\cdot\|_{2}$ is a norm on $C([0,1])$, we have:

$$
N(P+Q)=\|f+g\|_{2} \leq\|f\|_{2}+\|g\|_{2}=N(P)+N(Q)
$$

2.

$$
N(1-X)^{2}=\int_{0}^{1} t(1-t)^{2} \mathrm{~d} t=\int_{0}^{1}\left(t^{3}-2 t^{2}+t\right) \mathrm{d} t=\frac{1}{4}-\frac{2}{3}+\frac{1}{2}=\frac{1}{12},
$$

hence the distance between 1 and X with respect to N is:

$$
N(1-X)=\frac{1}{\sqrt{12}}=\frac{1}{2 \sqrt{3}} .
$$

The distance between 1 and X with respect to the norm $\|\cdot\|$ is:

$$
\|1-X\|=\int_{0}^{1}|1-t| \mathrm{d} t=\int_{0}^{1}(1-t) \mathrm{d} t=1-\frac{1}{2}=\frac{1}{2}
$$

3. Let $n \in \mathbb{N}$. Then:

$$
\left\|P_{n}-0_{E}\right\|=\left\|P_{n}\right\|=\int_{0}^{1} \sqrt{n} t^{n} \mathrm{~d} t=\frac{\sqrt{n}}{n+1} \underset{n \rightarrow+\infty}{\longrightarrow} 0
$$

hence the sequence $\left(P_{n}\right)_{n \geq 0}$ converges to 0_{E} with respect to the norm $\|\cdot\|$.

$$
N\left(P_{n}-0_{E}\right)^{2}=N\left(P_{x}\right)^{2}=\int_{0}^{1} t n t^{2 n} \mathrm{~d} t=n \int_{0}^{1} t^{2 n+1} \mathrm{~d} t=\frac{n}{2 n+2} \underset{n \rightarrow+\infty}{\longrightarrow} \frac{1}{2} \neq 0
$$

hence the sequence $\left(P_{n}\right)_{n \geq 0}$ doesn't converge to 0_{E} with respect to the norm N.

$$
\begin{aligned}
& { }^{1} \text { Another possibility to show that } N \text { is a norm: define } \\
& \left.\qquad \begin{array}{rl}
\varphi: E & \longrightarrow([0,1]) \\
P & \longmapsto\left(\begin{array}{c}
{[0,1]}
\end{array}>\sqrt{\longrightarrow}\right. \\
t & \longmapsto \sqrt{t} P(t)
\end{array}\right) .
\end{aligned}
$$

Then φ is linear and for $P \in E, N(P)=\|\varphi(P)\|_{2}$. In order to conclude that N is a norm, we only need to check that φ is injective: let $P \in E$ such that $\varphi(P)=0$, i.e.,

$$
\forall t \in[0,1], \sqrt{t} P(t)=0
$$

Then:

$$
\forall t \in(0,1], P(t)=0
$$

and hence the polynomial P has an infinite number of roots, hence $P=0_{E}$.
4. a) Proposition P 1 is false: if it were true, there would exist $\alpha>0$ such that $\alpha N \geq\|\cdot\|$, and in particular we would have, for $n \in \mathbb{N}$,

$$
\alpha N\left(P_{n}\right)=\alpha \frac{\sqrt{n}}{\sqrt{2 n+2}} \leq\left\|P_{n}\right\|=\frac{\sqrt{n}}{n+1},
$$

and taking the limit as $n \rightarrow+\infty$ would yield:

$$
\alpha \frac{1}{\sqrt{2}} \leq 0
$$

which is impossible since $\alpha>0$.
b) The norms N and $\|\cdot\|$ are not equivalent.

Exercise 4.

1. Let $n \geq 2$. The function $t \mapsto \ln (t) /(1+t)^{n}$ is continuous on $[1,+\infty)$, hence I_{n} is improper at $+\infty$. Now since $n \geq 2$ (and since \ln is weaker than polynomials),

$$
\lim _{t \rightarrow+\infty} \frac{\ln (t) t^{3 / 2}}{(1+t)^{n}}=0
$$

hence there exists $A>1$ such that:

$$
\forall t \geq A, 0 \leq \frac{\ln (t)}{(1+t)^{n}} \leq \frac{1}{t^{3} / 2}
$$

Now, the improper integral $\int_{1}^{+\infty} \frac{\mathrm{d} t}{t^{3 / 2}}$ is convergent (Riemann at $+\infty$ with $\alpha=3 / 2>1$), and we conclude, by the Comparison Test, that the improper integral I_{n} converges.
2. Let $A>1$. Then, by an integration by parts with

$$
\begin{array}{ll}
f(t)=\ln (t), & f^{\prime}(t)=\frac{1}{t} \\
g(t)=-\frac{1}{(n-1)(1+t)^{n-1}}, & g^{\prime}(t)=\frac{1}{(1+t)^{n}}
\end{array}
$$

we obtain:

$$
\begin{aligned}
\int_{1}^{A} \frac{\ln (t)}{(1+t)^{n}} \mathrm{~d} t & =\left[-\frac{\ln (t)}{(n-1)(1+t)^{n-1}}\right]_{t=1}^{t=A}+\int_{1}^{A} \frac{\mathrm{~d} t}{(n-1) t(1+t)^{n-1}} \\
& =-\frac{\ln (A)}{(n-1)(1+A)^{n-1}}+\frac{1}{n-1} \int_{1}^{A} \frac{\mathrm{~d} t}{t(1+t)^{n-1}}
\end{aligned}
$$

Finally, taking the limit as $A \rightarrow+\infty$ yields:

$$
I_{n}=0+\frac{1}{n-1} \int_{1}^{+\infty} \frac{\mathrm{d} t}{t(1+t)^{n-1}}
$$

so that $a_{n}=1 /(n-1)$.
3. Let $n \geq 3$. Then:

$$
\forall t \geq 1,0 \leq \frac{1}{t(1+t)^{n-1}} \leq \frac{1}{(1+t)^{n-1}}
$$

hence (the endpoints of the integral being in the correct order):

$$
0 \leq \int_{1}^{+\infty} \frac{\mathrm{d} t}{t(1+t)^{n-1}} \leq \int_{1}^{\infty} \frac{\mathrm{d} t}{(1+t)^{n-1}}=\frac{1}{(n-2) 2^{n-2}}
$$

and hence

$$
0 \leq I_{n}=\frac{1}{n-1} \int_{1}^{+\infty} \frac{\mathrm{d} t}{t(1+t)^{n-1}} \leq \frac{1}{(n-1)(n-2) 2^{n-2}}
$$

4. a) Let $n \geq 3$ and $t \in(0,+\infty)$. Since $1+t \neq 1$ we can use the formula for the sum of a geometric progression of ratio $q=1 /(1+t)$:

$$
\sum_{k=1}^{n-2} \frac{1}{(1+t)^{k+1}}=\frac{q^{2}-q^{n}}{1-q}=\frac{1 /(1+t)^{2}-1 /(1+t)^{n}}{t /(1+t)}=\frac{1}{t(1+t)}-\frac{1}{t(1+t)^{n-1}}
$$

b) We differentiate F_{n} : for $t \in(0,+\infty)$,

$$
\begin{aligned}
F_{n}^{\prime}(t) & =\frac{1}{t}-\frac{1}{1+t}+\sum_{k=1}^{n-2}-\frac{k}{k(1+t)^{k+1}} \\
& =\frac{1}{t}-\frac{1}{1+t}-\sum_{k=1}^{n-2} \frac{1}{(1+t)^{k+1}} \\
& =\frac{1}{t}-\frac{1}{1+t}-\frac{1}{t(1+t)}+\frac{1}{t(1+t)^{n-1}} \quad \text { By the previous question } \\
& =\frac{1+t-t}{t(1+t)}-\frac{1}{t(1+t)}+\frac{1}{t(1+t)^{n-1}} \\
& =\frac{1}{t(1+t)^{n-1}}=f_{n}(t)
\end{aligned}
$$

5. Let $n \geq 3$. Then:

$$
\begin{aligned}
(n-1) I_{n} & =\int_{1}^{+\infty} \frac{\mathrm{d} t}{t(1+t)^{n-1}} \quad \text { by Question 2 } \\
& =\lim _{A \rightarrow+\infty} F_{n}(A)-F_{n}(1) \quad \text { by Question 4b) } \\
& =\lim _{A \rightarrow+\infty} \ln \left(\frac{A}{1+A}\right)+\sum_{k=1}^{n-2} \frac{1}{k(1+A)^{k}}-\ln \left(\frac{1}{2}\right)-\sum_{k=1}^{n-2} \frac{1}{k 2^{k}} \\
& =0+0-\ln \left(\frac{1}{2}\right)-\sum_{k=1}^{n-2} \frac{1}{k 2^{k}} \\
& =\ln 2-\sum_{k=1}^{n-2} \frac{1}{k 2^{k}}
\end{aligned}
$$

Hence $C=\ln 2$.
6. By Question 3,

$$
\forall n \geq 3,0 \leq I_{n} \leq \frac{1}{(n-2) 2^{n-2}}
$$

and we conclude, by the Squeeze Theorem, that $\lim _{n \rightarrow+\infty}(n-1) I_{n}=0$.
Hence, taking the limit as $n \rightarrow+\infty$ in the relation obtained in Question 5 yields:

$$
0=\ln 2-\lim _{n \rightarrow+\infty} \sum_{k=1}^{n-2} \frac{1}{k 2^{k}}
$$

from which we conclude that $\ell=\ln 2$.
Exercise 5. P3 is true: if $u \in \bar{B}_{N}$ then $N(u) \leq 1$, i.e., $\|u\|+\|u\|^{\prime} \leq 1$. Since $\|u\| \geq 0$ and $\|u\|^{\prime} \geq 0$ we conclude that $\|u\| \leq 1$ and $\|u\|^{\prime} \leq 1$, hence $u \in \bar{B}$ and $u \in \bar{B}^{\prime}$, and we conclude that $u \in \bar{B} \cap \bar{B}^{\prime}$.
If we replace N with N^{\prime} the result of $P 3$ is still true, namely $\bar{B}_{N}^{\prime} \subset \bar{B} \cap \bar{B}^{\prime}$: the same proof as above applies in this case, as the crucial step

$$
\max \left\{\|u\|,\left\|u^{\prime}\right\|\right\} \leq 1 \Longrightarrow\|u\| \leq 1 \text { and }\|u\|^{\prime} \leq 1
$$

is still valid.

Exercise 6.

- Case $\alpha>3$. Since \mathbb{R}^{3} is a finite dimensional vector space, all norms on \mathbb{R}^{3} are equivalent, and we choose to use the 4-norm. Let $(x, y, z) \in \mathbb{R}^{3} \backslash \mathbf{0}$. Then:

$$
\begin{aligned}
|f(x, y, z)-f(\mathbf{0})| & =\frac{|x|^{\alpha}|z|}{x^{4}+y^{4}+z^{4}} \\
& \leq \frac{\|(x, y, z)\|_{4}^{\alpha+1}}{\|(x, y, z)\|_{4}^{4}} \\
& \leq\|(x, y, z)\|_{4}^{\alpha-3} \\
& \xrightarrow[(x, y, z) \rightarrow \mathbf{0}]{\longrightarrow} 0 .
\end{aligned}
$$

hence $\lim _{(x, y, z) \rightarrow \mathbf{0}} f(x, y, z)=0$.

- Case $\alpha \leq 3$. Let $t \in \mathbb{R}^{*}$. Then:

$$
|f(t, t, t)|=\frac{|t|^{\alpha}|t|}{3 t^{4}}=\frac{1}{3}|t|^{\alpha-3} \underset{t \rightarrow 0}{\longrightarrow} \begin{cases}1 / 3 & \text { if } \alpha=3 \\ +\infty & \text { if } \alpha<3\end{cases}
$$

and this limit is not nil, yet

$$
\lim _{t \rightarrow 0}(t, t, t)=(0,0,0)=\mathbf{0}
$$

We hence conclude, by the Composition of Limits Theorem, that f is not continuous at $\mathbf{0}$.

