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Exercise 1.

• The function t 7→ e−t/
√
t is continuous on [1,+∞), hence I is improper at +∞. Now,

∀t ∈ [1,+∞), 0 ≤ e−t√
t
≤ e−t,

and we know that the improper integral ∫ +∞

1

e−t dt

is convergent; hence, by the comparison test, I converges.

• The function t 7→ tα/
(
(1 + t)

√
t
)
is continuous on (0,+∞), hence Jα is improper at 0+ and at +∞.

– Convergence at 0+: since
tα

(1 + t)
√
t
∼

t→0+

1

t1/2−α
> 0.

we conclude, by the equivalent test (and by Riemann at a finite point) that Jα converges at 0+ if and
only if 1/2− α < 1 i.e., α > −1/2.

– Convergence at +∞: since
tα

(1 + t)
√
t
∼

t→0+

1

t3/2−α
> 0.

we conclude, by the equivalent test (and by Riemann at +∞) that Jα converges at +∞ if and only if
3/2− α > 1 i.e., α < 1/2.

Conclusion: Jα converges if and only if α ∈ (−1/2, 1/2).

Exercise 2.

1. Let x ∈ R∗+. Since x3 > 0, the function t 7→ 1/
(
x3+ t3

)
is continuous on [0,+∞), hence the improper integral

Ix =

∫ +∞

0

dt

x3 + t3

is improper at +∞. Now,
1

x3 + t3
∼

t→+∞

1

t3
> 0

hence, by the equivalent test (and by Riemann at +∞ with α > 3), we conclude that Ix converges.

Hence f is well defined.

2. Let x ∈ R∗+. Since

∀t ∈ [0,+∞),
1

x3 + t3
≥ 0

(and the endpoints of the integral are in the correct order) we conclude that f(x) ≥ 0. In fact f(x) > 0 since
the function we’re integrating is non-negative, non-nil and continuous.

3. Let x1, x2 ∈ R∗+ such that x1 < x2. Then:

∀t ∈ [0,+∞),
1

x31 + t3
>

1

x32 + t3

and integrating from 0 to +∞ yields f(x1) > f(x2) (the strict inequality is obtained by observing that the
functions we’re integrating are ordered, distinct and continuous). Hence f is decreasing.



4. Let A > 0. By using the substitution u = t/x we obtain:∫ A

0

dt

t3 + x3
=

∫ A/x

0

xdu

x3 + x3u3
=

1

x2

∫ A/x

0

du

1 + u3

hence (taking the limit as A→ +∞) yields:

f(x) =
1

x2
f(1).

5. See Figure 1.
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Figure 1. Graph of the function f of Exercise 2: f is decreasing and positive. In fact, this graph is of the form
y = f(1)/x2 with f(1) > 0.



Exercise 3.

1. We check that N satisfies the conditions to be a norm: 1

• Separation property: let P ∈ E such that N(P ) = 0. Then, since the function t 7→ tP (t)2 is non-negative
and continuous on [0, 1], we conclude that

∀t ∈ [0, 1], tP (t)2 = 0,

hence
∀t ∈ (0, 1], P (t) = 0.

Then the polynomial P has an infinite number of roots, and hence P = 0E .

• Positive homogeneity: let P ∈ E and λ ∈ R. Then:

N(λP ) =

(∫ 1

0

tλ2P (t)2 dt

)1/2

=

(
λ2
∫ 1

0

tP (t)2 dt

)1/2

= |λ|
(∫ 1

0

tP (t)2 dt

)1/2

= |λ|N(P ).

• Triangle inequality: let P,Q ∈ E. Define:

f : [0, 1] −→ R
t 7−→

√
t P (t)

and g : [0, 1] −→ R
t 7−→

√
tQ(t).

Then f, g ∈ C
(
[0, 1]

)
, and N(P +Q) = ‖f + g‖2, and since ‖·‖2 is a norm on C

(
[0, 1]

)
, we have:

N(P +Q) = ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2 = N(P ) +N(Q).

2.

N(1−X)2 =

∫ 1

0

t(1− t)2 dt =
∫ 1

0

(
t3 − 2t2 + t

)
dt =

1

4
− 2

3
+

1

2
=

1

12
,

hence the distance between 1 and X with respect to N is:

N(1−X) =
1√
12

=
1

2
√
3
.

The distance between 1 and X with respect to the norm ‖·‖ is:

‖1−X‖ =
∫ 1

0

|1− t|dt =
∫ 1

0

(1− t) dt = 1− 1

2
=

1

2
.

3. Let n ∈ N. Then:

‖Pn − 0E‖ = ‖Pn‖ =
∫ 1

0

√
ntn dt =

√
n

n+ 1
−→

n→+∞
0,

hence the sequence (Pn)n≥0 converges to 0E with respect to the norm ‖·‖.

N(Pn − 0E)
2 = N(Px)

2 =

∫ 1

0

tnt2n dt = n

∫ 1

0

t2n+1 dt =
n

2n+ 2
−→

n→+∞

1

2
6= 0,

hence the sequence (Pn)n≥0 doesn’t converge to 0E with respect to the norm N .
1Another possibility to show that N is a norm: define

ϕ : E −→ C
(
[0, 1]

)
P 7−→

(
[0, 1] −→ R
t 7−→

√
t P (t)

)
.

Then ϕ is linear and for P ∈ E, N(P ) =
∥∥ϕ(P )

∥∥
2
. In order to conclude that N is a norm, we only need to check that ϕ is injective:

let P ∈ E such that ϕ(P ) = 0, i.e.,
∀t ∈ [0, 1],

√
t P (t) = 0.

Then:
∀t ∈ (0, 1], P (t) = 0,

and hence the polynomial P has an infinite number of roots, hence P = 0E .



4. a) Proposition P1 is false: if it were true, there would exist α > 0 such that αN ≥ ‖·‖, and in particular we
would have, for n ∈ N,

αN(Pn) = α

√
n√

2n+ 2
≤ ‖Pn‖ =

√
n

n+ 1
,

and taking the limit as n→ +∞ would yield:

α
1√
2
≤ 0

which is impossible since α > 0.

b) The norms N and ‖·‖ are not equivalent.

Exercise 4.

1. Let n ≥ 2. The function t 7→ ln(t)/(1+ t)n is continuous on [1,+∞), hence In is improper at +∞. Now since
n ≥ 2 (and since ln is weaker than polynomials),

lim
t→+∞

ln(t)t3/2

(1 + t)n
= 0

hence there exists A > 1 such that:

∀t ≥ A, 0 ≤ ln(t)

(1 + t)n
≤ 1

t3/2
.

Now, the improper integral
∫ +∞
1

dt
t3/2

is convergent (Riemann at +∞ with α = 3/2 > 1), and we conclude,
by the Comparison Test, that the improper integral In converges.

2. Let A > 1. Then, by an integration by parts with

f(t) = ln(t), f ′(t) =
1

t

g(t) = − 1

(n− 1)(1 + t)n−1
, g′(t) =

1

(1 + t)n
.

we obtain: ∫ A

1

ln(t)

(1 + t)n
dt =

[
− ln(t)

(n− 1)(1 + t)n−1

]t=A
t=1

+

∫ A

1

dt

(n− 1)t(1 + t)n−1

= − ln(A)

(n− 1)(1 +A)n−1
+

1

n− 1

∫ A

1

dt

t(1 + t)n−1

Finally, taking the limit as A→ +∞ yields:

In = 0 +
1

n− 1

∫ +∞

1

dt

t(1 + t)n−1
,

so that an = 1/(n− 1).

3. Let n ≥ 3. Then:
∀t ≥ 1, 0 ≤ 1

t(1 + t)n−1
≤ 1

(1 + t)n−1

hence (the endpoints of the integral being in the correct order):

0 ≤
∫ +∞

1

dt

t(1 + t)n−1
≤
∫ ∞
1

dt

(1 + t)n−1
=

1

(n− 2)2n−2

and hence

0 ≤ In =
1

n− 1

∫ +∞

1

dt

t(1 + t)n−1
≤ 1

(n− 1)(n− 2)2n−2



4. a) Let n ≥ 3 and t ∈ (0,+∞). Since 1 + t 6= 1 we can use the formula for the sum of a geometric progression
of ratio q = 1/(1 + t):

n−2∑
k=1

1

(1 + t)k+1
=
q2 − qn

1− q
=

1/(1 + t)2 − 1/(1 + t)n

t/(1 + t)
=

1

t(1 + t)
− 1

t(1 + t)n−1

b) We differentiate Fn: for t ∈ (0,+∞),

F ′n(t) =
1

t
− 1

1 + t
+

n−2∑
k=1

− k

k(1 + t)k+1

=
1

t
− 1

1 + t
−
n−2∑
k=1

1

(1 + t)k+1

=
1

t
− 1

1 + t
− 1

t(1 + t)
+

1

t(1 + t)n−1
By the previous question

=
1 + t− t
t(1 + t)

− 1

t(1 + t)
+

1

t(1 + t)n−1

=
1

t(1 + t)n−1
= fn(t).

5. Let n ≥ 3. Then:

(n− 1)In =

∫ +∞

1

dt

t(1 + t)n−1
by Question 2

= lim
A→+∞

Fn(A)− Fn(1) by Question 4b)

= lim
A→+∞

ln

(
A

1 +A

)
+

n−2∑
k=1

1

k(1 +A)k
− ln

(
1

2

)
−
n−2∑
k=1

1

k2k

= 0 + 0− ln

(
1

2

)
−
n−2∑
k=1

1

k2k

= ln 2−
n−2∑
k=1

1

k2k

Hence C = ln 2.

6. By Question 3,

∀n ≥ 3, 0 ≤ In ≤
1

(n− 2)2n−2

and we conclude, by the Squeeze Theorem, that lim
n→+∞

(n− 1)In = 0.

Hence, taking the limit as n→ +∞ in the relation obtained in Question 5 yields:

0 = ln 2− lim
n→+∞

n−2∑
k=1

1

k2k

from which we conclude that ` = ln 2.

Exercise 5. P3 is true: if u ∈ BN then N(u) ≤ 1, i.e., ‖u‖+ ‖u‖′ ≤ 1. Since ‖u‖ ≥ 0 and ‖u‖′ ≥ 0 we conclude
that ‖u‖ ≤ 1 and ‖u‖′ ≤ 1, hence u ∈ B and u ∈ B′, and we conclude that u ∈ B ∩B′.
If we replace N with N ′ the result of P3 is still true, namely B

′
N ⊂ B ∩B

′
: the same proof as above applies in

this case, as the crucial step

max
{
‖u‖, ‖u′‖

}
≤ 1 =⇒ ‖u‖ ≤ 1 and ‖u‖′ ≤ 1

is still valid.



Exercise 6.

• Case α > 3. Since R3 is a finite dimensional vector space, all norms on R3 are equivalent, and we choose
to use the 4-norm. Let (x, y, z) ∈ R3 \ 0. Then:

∣∣f(x, y, z)− f(0)∣∣ = |x|α|z|
x4 + y4 + z4

≤
∥∥(x, y, z)∥∥α+1

4∥∥(x, y, z)∥∥4
4

≤
∥∥(x, y, z)∥∥α−3

4

−→
(x,y,z)→0

0.

hence lim
(x,y,z)→0

f(x, y, z) = 0.

• Case α ≤ 3. Let t ∈ R∗. Then:

∣∣f(t, t, t)∣∣ = |t|α|t|
3t4

=
1

3
|t|α−3 −→

t→0

{
1/3 if α = 3

+∞ if α < 3

and this limit is not nil, yet
lim
t→0

(t, t, t) = (0, 0, 0) = 0.

We hence conclude, by the Composition of Limits Theorem, that f is not continuous at 0.


