

SCAN 2 — Solution of Math Test #2

November 29, 2021

Romaric Pujol, romaric.pujol@insa-lyon.fr

# Exercise 1.

1. Let  $u \in E$ . For  $h \in E$  one has:

$$q(u+h) = \int_0^1 u(t)^2 dt + 2 \int_0^1 u(t) h(t) dt + \int_0^1 h(t)^2 dt$$
  
=  $q(u) + 2 \int_0^1 u(t) h(t) dt + \int_0^1 h(t)^2 dt.$ 

In this expression, we identify the constant term as q(u), the linear term (with respect to h) as the second term, and the remainder as the last term.

• We now check for the continuity of the linear map

$$\begin{array}{rcl} \alpha \ : \ E & \longrightarrow & \mathbb{R} \\ & h & \longmapsto \int_0^1 u(t) \, h(t) \, \mathrm{d}t. \end{array}$$

Let  $h \in E$ :

$$\begin{aligned} \alpha(h) &| = \left| \int_0^1 u(t) h(t) \, \mathrm{d}t \right| \\ &\leq \int_0^1 |u(t)| |h(t)| \, \mathrm{d}t \qquad \text{Triangle inequality for integrals, } 0 \leq 1 \\ &\leq \int_0^1 |u(t)| \|h\|_\infty \, \mathrm{d}t \qquad \text{since } |h| \leq \|h\|_\infty \\ &= \|h\|_\infty \int_0^1 |u(t)| \, \mathrm{d}t. \end{aligned}$$

Hence  $\alpha(h) \xrightarrow[\|h\|_{\infty} \to 0]{} 0 = \alpha(0_E)$ , hence  $\alpha$  is continuous at  $0_E$ , hence (since  $\alpha$  is linear)  $\alpha$  is continuous.

• We now check that the remainder is a  $o(||h||_{\infty})$  as  $||h||_{\infty} \to 0$ :

$$\left| \int_0^1 h(t)^2 \, \mathrm{d}t \right| \le \int_0^1 \|h\|_\infty^2 \, \mathrm{d}t = \|h\|_\infty^2 \underset{\|h\|_\infty \to 0}{=} o\big(\|h\|_\infty\big).$$

Hence q is differentiable at u and  $d_u q = \alpha(u)$ .

2. Let  $u \in E$  and  $t \in [0, 1]$ . Then:

$$\begin{aligned} \left|\varphi(u)(t)\right| &\leq \left|\omega e^{-\omega t} \int_{0}^{t} u(s) e^{\omega s} ds\right| \\ &\leq \left\|u\right\|_{\infty} \left|\omega e^{-\omega t} \int_{0}^{t} e^{\omega s} ds\right| \\ &= \left\|u\right\|_{\infty} \left|e^{-\omega t} \left[e^{\omega s}\right]_{s=0}^{s=t}\right| \\ &= \left\|u\right\|_{\infty} \left|e^{-\omega t} \left(e^{\omega t} - 1\right)\right| \\ &= \left\|u\right\|_{\infty} \left(1 - e^{-\omega t}\right) \\ &\leq \left\|u\right\|_{\infty} \left(1 - e^{-\omega}\right). \end{aligned}$$

Hence

$$\|\varphi(u)\| \le \|u\|_{\infty} (1 - e^{-\omega}).$$

From the previous inequality we conclude that  $\varphi$  is continuous at  $0_E$ , and since  $\varphi$  is linear we conclude that  $\varphi$  is continuous.

# 3. Let $u \in E$ . Then:

$$\begin{aligned} \left\|\psi(u)\right\| &= \omega \left\|u - \varphi(u)\right\|_{\infty} \\ &\leq \omega \Big( \left\|u\right\|_{\infty} + \left\|\varphi(u)\right\|_{\infty} \Big) \quad by \ the \ triangle \ inequality \\ &\leq \omega \Big( \left\|u\right\|_{\infty} + \left\|u\right\|_{\infty} (1 - e^{-\omega}) \Big) \qquad from \ Question \ 2 \\ &= \omega (2 - e^{-\omega}) \left\|u\right\|_{\infty}. \end{aligned}$$

Hence  $K = \omega (2 - e^{-\omega})$  is such a value of K.

From the previous inequality, we conclude that  $\psi$  is continuous at  $0_E$ . Since  $\psi$  is linear, we conclude that  $\psi$  is continuous. Hence  $\psi$  is a linear continuous map, and we can conclude that  $\psi$  is differentiable and that:

$$\forall u \in E, \ \mathrm{d}_u \psi = \psi.$$

# 4. Notice that:

$$\forall u \in E, \ W(u) = \int_0^1 \left(\frac{1}{\omega}\psi(u)(t)\right)^2 \,\mathrm{d}t = \frac{1}{\omega^2}q\big(\psi(u)\big),$$

hence

$$W = \frac{1}{\omega^2} q \circ \psi.$$

Since  $\psi$  and q are differentiable we conclude, by the Chain Rule, that W is differentiable and that:

$$\forall u \in E, \ \mathbf{d}_u W = \frac{1}{\omega^2} \mathbf{d}_{\psi(u)} q \circ D_u \psi$$
$$= \frac{1}{\omega^2} \mathbf{d}_{\psi(u)} q \circ \psi.$$

More explicitly, for  $u \in E$ ,

$$d_u W : E \longrightarrow \mathbb{R} .$$
  
$$h \longmapsto \frac{1}{\omega^2} \int_0^1 \psi(u)(t) \, \psi(h)(t)$$

#### Exercise 2.

1. Let  $v \in E$ , and define:

$$\varphi : \mathbb{R} \longrightarrow \mathbb{R}$$
$$t \longmapsto f(P + tv)$$

Then, for  $t \in \mathbb{R}$ :

$$\begin{split} \varphi(t) &= P(0) + tv(0) + \left(P + tv\right)'(1)^2 \\ &= P(0) + tv(0) + \left(P'(1) + tv'(1)\right)^2 \\ &= P(0) + P'(1)^2 + t\left(v(0) + 2P'(1)v'(1)\right) + t^2h'(1)^2, \end{split}$$

so that  $\varphi'(0) = v(0) + 2P'(1)v'(1)$ . This shows that  $\nabla_v f(P)$  exists. We finally conclude:

$$\forall v \in E, \ \nabla_v f(P) = v(0) + 2P'(1)v'(1)$$

2. In this case: 
$$v(0) = 2$$
,  $v' = -1 + 2X$  so that  $v'(1) = 1$  and  $P'_0 = -2X$  so that  $P'_0(1) = -2$ . Hence:

$$\nabla_v f(P_0) = -2$$

3. Assuming that f is differentiable at P, we have:

$$\forall v \in E, \ \mathrm{d}_P f(v) = \nabla_v P,$$

hence:

$$d_P f : E \longrightarrow \mathbb{R} \\ v \longmapsto v(0) + 2P'(1)v'(1).$$

**Exercise 3.** Notice that f can be written as:

$$\begin{array}{rccc} f : & \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ & & & \\ & & (x,y) \longmapsto \begin{cases} \frac{x^4}{x^2 + y^2} & \text{if } (x,y) \in U \\ 0 & & \text{otherwise} \end{cases}$$

with  $U = \mathbb{R}^2 \setminus \{(0, 0)\}.$ 

1. By elementary operations, f is continuous on  $\mathring{U} = U$ . We now check that continuity of f at (0,0): let  $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ :

$$\left|f(x,y) - f(0,0)\right| = \left|\frac{x^4}{x^2 + y^2}\right| \le \frac{\|(x,y)\|_2^4}{\|(x,y)\|_2^2} = \|(x,y)\|_2^2 \underset{\|(x,y)\|_2 \to 0}{\longrightarrow} 0$$

Hence f is also continuous at (0, 0).

2. Let  $v = (a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ . Then, for  $t \in \mathbb{R}^*$ :

$$\frac{f(tv) - f(0,0)}{t} = \frac{1}{t} \frac{t^4 a^4}{t^2 (a^2 + b^2)} = t \frac{a^4}{a^2 + b^2} \underset{t \to 0}{\longrightarrow} 0.$$

Hence  $\nabla_v f(0,0) = 0$ .

3. We know that the first-order partial derivatives of f at (0,0) are directional derivative of f at (0,0), hence the first-partial derivatives of f at (0,0) exist and we have:

$$\partial_1 f(0,0) = \nabla_{e_1} f(0,0) = 0 \qquad \text{and} \qquad \partial_2 f(0,0) = \nabla_{e_2} f(0,0) = 0.$$

4. Let  $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ . Then:

$$\partial_1 f(x,y) = \frac{2x^3(x^2 + 2y^2)}{(x^2 + y^2)^2}$$
 and  $\partial_2 f(x,y) = -\frac{2x^4y}{(x^2 + y^2)^2}.$ 

Then:

$$\left|\partial_1 f(x,y)\right| = \left|\frac{2x^3 \left(x^2 + 2y^2\right)}{\left(x^2 + y^2\right)^2}\right| \le 2\frac{\|(x,y)\|_2^3 \times 2\|(x,y)\|_2^2}{\|(x,y)\|_2^4} = 4\|(x,y)\|_2 \underset{\|(x,y)\|_2 \to 0}{\longrightarrow} 0$$

and

$$\left|\partial_1 f(x,y)\right| = \left|-\frac{2x^4y}{\left(x^2 + y^2\right)^2}\right| \le 2\frac{\|(x,y)\|_2^5}{\|(x,y)\|_2^4} = 2\|(x,y)\|_2 \xrightarrow[\|(x,y)\|_2 \to 0]{} 0$$

Hence  $\partial_1 f$  and  $\partial_2 f$  are continuous at (0,0).

5. Since  $\partial_1 f$  and  $\partial_2 f$  exist in a neighborhood of (0,0) and are continuous at (0,0), we conclude that f is differentiable at (0,0). Moreover:

$$\mathbf{d}_{(0,0)}f = \partial_1 f(0,0)e'_1 + \partial_2 f(0,0)e'_2 = \mathbf{0}_{\mathscr{L}(\mathbb{R}^2,\mathbb{R})}$$

(it's the nil linear form on  $\mathbb{R}^2$ ).

# Exercise 4.

1. Let  $(x, y) \in \mathbb{R}^2$ . Then:

$$\partial_1 g(x, y) = y \,\partial_1 f(xy, -x, y^2) - \partial_2 f(xy, -x, y^2) \partial_2 g(x, y) = x \,\partial_1 f(xy, -x, y^2) + 2y \,\partial_3 f(xy, -x, y^2).$$

2. Since f is obtained from elementary operations and the function sin (which is of class  $C^1$ ), we conclude that f is of class  $C^1$ . More explicitly: for  $(x, y) \in \mathbb{R}^2$ ,

$$\partial_1 f(x, y) = \sin(y)$$
 and  $\partial_2 f(x, y) = x \cos(y) + 2y^2$ 

from which we notice that  $\partial_1 f$  and  $\partial_2 f$  are continuous. From these partial derivatives, we can write:

$$d_{(x,y)}f = \sin(y)e'_1 + (x\cos(y) + 2y^2)e'_2$$

or, equivalently,

$$d_{(x,y)}f : \mathbb{R}^2 \longrightarrow \mathbb{R} (h_1, h_2) \longmapsto \sin(y)h_1 + (x\cos(y) + 2y^2)h_2.$$

3. Define the path  $p: t \mapsto (t, t)$ . Then  $\lim_{t \to 0} p(t) = (0, 0)$  and, for  $t \in \mathbb{R}^*$ :

$$f(p(t)) = f(t,t) = \frac{t^2}{2t^2} = \frac{1}{2} \xrightarrow[t \to 0]{} \frac{1}{2} \neq f(p(0)) = 0,$$

hence f is not continuous at (0,0). We now compute the first-order partial derivatives of f at (0,0):

$$\frac{f(t,0)-f(0,0)}{t}=\frac{0-0}{t}=0\underset{t\rightarrow 0}{\longrightarrow}0$$

and

$$\frac{f(0,t) - f(0,0)}{t} = \frac{0-0}{t} = 0 \xrightarrow[t \to 0]{} 0,$$

hence  $\partial_1 f(0,0)$  and  $\partial_2 f(0,0)$  exist and:

$$\partial_1 f(0,0) = \partial_2 f(0,0) = 0.$$