Exercise 1.

1. Let $u \in E$. For $h \in E$ one has:

$$
\begin{aligned}
q(u+h) & =\int_{0}^{1} u(t)^{2} \mathrm{~d} t+2 \int_{0}^{1} u(t) h(t) \mathrm{d} t+\int_{0}^{1} h(t)^{2} \mathrm{~d} t \\
& =q(u)+2 \int_{0}^{1} u(t) h(t) \mathrm{d} t+\int_{0}^{1} h(t)^{2} \mathrm{~d} t
\end{aligned}
$$

In this expression, we identify the constant term as $q(u)$, the linear term (with respect to h) as the second term, and the remainder as the last term.

- We now check for the continuity of the linear map

$$
\begin{aligned}
\alpha: E & \longrightarrow \mathbb{R} \\
h & \longmapsto \int_{0}^{1} u(t) h(t) \mathrm{d} t .
\end{aligned}
$$

Let $h \in E$:

$$
\begin{aligned}
|\alpha(h)| & =\left|\int_{0}^{1} u(t) h(t) \mathrm{d} t\right| \\
& \leq \int_{0}^{1}|u(t)||h(t)| \mathrm{d} t \quad \text { Triangle inequality for integrals, } 0 \leq 1 \\
& \leq \int_{0}^{1}|u(t)|\|h\|_{\infty} \mathrm{d} t \quad \text { since }|h| \leq\|h\|_{\infty} \\
& =\|h\|_{\infty} \int_{0}^{1}|u(t)| \mathrm{d} t .
\end{aligned}
$$

Hence $\alpha(h) \underset{\|h\|_{\infty} \rightarrow 0}{\longrightarrow} 0=\alpha\left(0_{E}\right)$, hence α is continuous at 0_{E}, hence (since α is linear) α is continuous.

- We now check that the remainder is a $o\left(\|h\|_{\infty}\right)$ as $\|h\|_{\infty} \rightarrow 0$:

$$
\left|\int_{0}^{1} h(t)^{2} \mathrm{~d} t\right| \leq \int_{0}^{1}\|h\|_{\infty}^{2} \mathrm{~d} t=\|h\|_{\infty}^{2} \underset{\|h\|_{\infty} \rightarrow 0}{=} o\left(\|h\|_{\infty}\right) .
$$

Hence q is differentiable at u and $\mathrm{d}_{u} q=\alpha(u)$.
2. Let $u \in E$ and $t \in[0,1]$. Then:

$$
\begin{aligned}
|\varphi(u)(t)| & \leq\left|\omega \mathrm{e}^{-\omega t} \int_{0}^{t} u(s) \mathrm{e}^{\omega s} \mathrm{~d} s\right| \\
& \leq\|u\|_{\infty}\left|\omega \mathrm{e}^{-\omega t} \int_{0}^{t} \mathrm{e}^{\omega s} \mathrm{~d} s\right| \\
& =\|u\|_{\infty}\left|\mathrm{e}^{-\omega t}\left[\mathrm{e}^{\omega s}\right]_{s=0}^{s=t}\right| \\
& =\|u\|_{\infty}\left|\mathrm{e}^{-\omega t}\left(\mathrm{e}^{\omega t}-1\right)\right| \\
& =\|u\|_{\infty}\left(1-\mathrm{e}^{-\omega t}\right) \\
& \leq\|u\|_{\infty}\left(1-\mathrm{e}^{-\omega}\right) .
\end{aligned}
$$

Hence

$$
\|\varphi(u)\| \leq\|u\|_{\infty}\left(1-\mathrm{e}^{-\omega}\right) .
$$

From the previous inequality we conclude that φ is continuous at 0_{E}, and since φ is linear we conclude that φ is continuous.
3. Let $u \in E$. Then:

$$
\begin{aligned}
\|\psi(u)\| & =\omega\|u-\varphi(u)\|_{\infty} \\
& \leq \omega\left(\|u\|_{\infty}+\|\varphi(u)\|_{\infty}\right) \quad \text { by the triangle inequality } \\
& \leq \omega\left(\|u\|_{\infty}+\|u\|_{\infty}\left(1-\mathrm{e}^{-\omega}\right)\right) \quad \text { from Question 2 } \\
& =\omega\left(2-\mathrm{e}^{-\omega}\right)\|u\|_{\infty} .
\end{aligned}
$$

Hence $K=\omega\left(2-\mathrm{e}^{-\omega}\right)$ is such a value of K.
From the previous inequality, we conclude that ψ is continuous at 0_{E}. Since ψ is linear, we conclude that ψ is continuous. Hence ψ is a linear continuous map, and we can conclude that ψ is differentiable and that:

$$
\forall u \in E, \mathrm{~d}_{u} \psi=\psi .
$$

4. Notice that:

$$
\forall u \in E, W(u)=\int_{0}^{1}\left(\frac{1}{\omega} \psi(u)(t)\right)^{2} \mathrm{~d} t=\frac{1}{\omega^{2}} q(\psi(u))
$$

hence

$$
W=\frac{1}{\omega^{2}} q \circ \psi .
$$

Since ψ and q are differentiable we conclude, by the Chain Rule, that W is differentiable and that:

$$
\begin{aligned}
\forall u \in E, \mathrm{~d}_{u} W & =\frac{1}{\omega^{2}} \mathrm{~d}_{\psi(u)} q \circ D_{u} \psi \\
& =\frac{1}{\omega^{2}} \mathrm{~d}_{\psi(u)} q \circ \psi
\end{aligned}
$$

More explicitly, for $u \in E$,

\[

\]

Exercise 2.

1. Let $v \in E$, and define:

$$
\begin{aligned}
\varphi: \mathbb{R} & \longrightarrow \mathbb{R} \\
t & \longmapsto f(P+t v) .
\end{aligned}
$$

Then, for $t \in \mathbb{R}$:

$$
\begin{aligned}
\varphi(t) & =P(0)+t v(0)+(P+t v)^{\prime}(1)^{2} \\
& =P(0)+t v(0)+\left(P^{\prime}(1)+t v^{\prime}(1)\right)^{2} \\
& =P(0)+P^{\prime}(1)^{2}+t\left(v(0)+2 P^{\prime}(1) v^{\prime}(1)\right)+t^{2} h^{\prime}(1)^{2},
\end{aligned}
$$

so that $\varphi^{\prime}(0)=v(0)+2 P^{\prime}(1) v^{\prime}(1)$. This shows that $\nabla_{v} f(P)$ exists. We finally conclude:

$$
\forall v \in E, \nabla_{v} f(P)=v(0)+2 P^{\prime}(1) v^{\prime}(1) .
$$

2. In this case: $v(0)=2, v^{\prime}=-1+2 X$ so that $v^{\prime}(1)=1$ and $P_{0}^{\prime}=-2 X$ so that $P_{0}^{\prime}(1)=-2$. Hence:

$$
\nabla_{v} f\left(P_{0}\right)=-2
$$

3. Assuming that f is differentiable at P, we have:

$$
\forall v \in E, \mathrm{~d}_{P} f(v)=\nabla_{v} P
$$

hence:

$$
\begin{array}{rl}
\mathrm{d}_{P} f: E & \mathbb{R} \\
v & \longmapsto v(0)+2 P^{\prime}(1) v^{\prime}(1) .
\end{array}
$$

Exercise 3. Notice that f can be written as:

$$
\begin{aligned}
f: \quad \mathbb{R}^{2} & \longrightarrow \\
(x, y) & \longmapsto \begin{cases}\frac{x^{4}}{x^{2}+y^{2}} & \text { if }(x, y) \in U \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

with $U=\mathbb{R}^{2} \backslash\{(0,0)\}$.

1. By elementary operations, f is continuous on $\stackrel{\circ}{U}=U$. We now check that continuity of f at $(0,0)$: let $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}:$

$$
|f(x, y)-f(0,0)|=\left|\frac{x^{4}}{x^{2}+y^{2}}\right| \leq \frac{\|(x, y)\|_{2}^{4}}{\|(x, y)\|_{2}^{2}}=\|(x, y)\|_{2}^{2} \underset{\|(x, y)\|_{2} \rightarrow 0}{\longrightarrow} 0
$$

Hence f is also continuous at $(0,0)$.
2. Let $v=(a, b) \in \mathbb{R}^{2} \backslash\{(0,0)\}$. Then, for $t \in \mathbb{R}^{*}$:

$$
\frac{f(t v)-f(0,0)}{t}=\frac{1}{t} \frac{t^{4} a^{4}}{t^{2}\left(a^{2}+b^{2}\right)}=t \frac{a^{4}}{a^{2}+b^{2}} \underset{t \rightarrow 0}{\longrightarrow} 0
$$

Hence $\nabla_{v} f(0,0)=0$.
3. We know that the first-order partial derivatives of f at $(0,0)$ are directional derivative of f at $(0,0)$, hence the first-partial derivatives of f at $(0,0)$ exist and we have:

$$
\partial_{1} f(0,0)=\nabla_{e_{1}} f(0,0)=0 \quad \text { and } \quad \partial_{2} f(0,0)=\nabla_{e_{2}} f(0,0)=0
$$

4. Let $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$. Then:

$$
\partial_{1} f(x, y)=\frac{2 x^{3}\left(x^{2}+2 y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { and } \quad \partial_{2} f(x, y)=-\frac{2 x^{4} y}{\left(x^{2}+y^{2}\right)^{2}}
$$

Then:

$$
\left|\partial_{1} f(x, y)\right|=\left|\frac{2 x^{3}\left(x^{2}+2 y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}\right| \leq 2 \frac{\|(x, y)\|_{2}^{3} \times 2\|(x, y)\|_{2}^{2}}{\|(x, y)\|_{2}^{4}}=4\|(x, y)\|_{2} \underset{\|(x, y)\|_{2} \rightarrow 0}{\longrightarrow} 0
$$

and

$$
\left|\partial_{1} f(x, y)\right|=\left|-\frac{2 x^{4} y}{\left(x^{2}+y^{2}\right)^{2}}\right| \leq 2 \frac{\|(x, y)\|_{2}^{5}}{\|(x, y)\|_{2}^{4}}=2\|(x, y)\|_{2} \underset{\|(x, y)\|_{2} \rightarrow 0}{\longrightarrow} 0
$$

Hence $\partial_{1} f$ and $\partial_{2} f$ are continuous at $(0,0)$.
5. Since $\partial_{1} f$ and $\partial_{2} f$ exist in a neighborhood of $(0,0)$ and are continuous at $(0,0)$, we conclude that f is differentiable at $(0,0)$. Moreover:

$$
\mathrm{d}_{(0,0)} f=\partial_{1} f(0,0) e_{1}^{\prime}+\partial_{2} f(0,0) e_{2}^{\prime}=\mathbf{0}_{\mathscr{L}\left(\mathbb{R}^{2}, \mathbb{R}\right)}
$$

(it's the nil linear form on \mathbb{R}^{2}).

Exercise 4.

1. Let $(x, y) \in \mathbb{R}^{2}$. Then:

$$
\begin{aligned}
& \partial_{1} g(x, y)=y \partial_{1} f\left(x y,-x, y^{2}\right)-\partial_{2} f\left(x y,-x, y^{2}\right) \\
& \partial_{2} g(x, y)=x \partial_{1} f\left(x y,-x, y^{2}\right)+2 y \partial_{3} f\left(x y,-x, y^{2}\right) .
\end{aligned}
$$

2. Since f is obtained from elementary operations and the function sin (which is of class C^{1}), we conclude that f is of class C^{1}. More explicitly: for $(x, y) \in \mathbb{R}^{2}$,

$$
\partial_{1} f(x, y)=\sin (y) \quad \text { and } \quad \partial_{2} f(x, y)=x \cos (y)+2 y^{2}
$$

from which we notice that $\partial_{1} f$ and $\partial_{2} f$ are continuous. From these partial derivatives, we can write:

$$
\mathrm{d}_{(x, y)} f=\sin (y) e_{1}^{\prime}+\left(x \cos (y)+2 y^{2}\right) e_{2}^{\prime}
$$

or, equivalently,

$$
\begin{array}{ccc}
\mathrm{d}_{(x, y)} f: \begin{array}{c}
\mathbb{R} \\
\left(\mathbb{R}^{2}, h_{2}\right)
\end{array} \longrightarrow \sin (y) h_{1}+\left(x \cos (y)+2 y^{2}\right) h_{2} .
\end{array}
$$

3. Define the path $p: t \mapsto(t, t)$. Then $\lim _{t \rightarrow 0} p(t)=(0,0)$ and, for $t \in \mathbb{R}^{*}$:

$$
f(p(t))=f(t, t)=\frac{t^{2}}{2 t^{2}}=\frac{1}{2} \underset{t \rightarrow 0}{\longrightarrow} \frac{1}{2} \neq f(p(0))=0
$$

hence f is not continuous at $(0,0)$. We now compute the first-order partial derivatives of f at $(0,0)$:

$$
\frac{f(t, 0)-f(0,0)}{t}=\frac{0-0}{t}=0 \underset{t \rightarrow 0}{\longrightarrow} 0
$$

and

$$
\frac{f(0, t)-f(0,0)}{t}=\frac{0-0}{t}=0 \underset{t \rightarrow 0}{\longrightarrow} 0,
$$

hence $\partial_{1} f(0,0)$ and $\partial_{2} f(0,0)$ exist and:

$$
\partial_{1} f(0,0)=\partial_{2} f(0,0)=0
$$

