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Exercise 1.

1. Let u ∈ E. For h ∈ E one has:

q(u+ h) =

∫ 1

0

u(t)2 dt+ 2

∫ 1

0

u(t)h(t) dt+

∫ 1

0

h(t)2 dt

= q(u) + 2

∫ 1

0

u(t)h(t) dt +

∫ 1

0

h(t)2 dt.

In this expression, we identify the constant term as q(u), the linear term (with respect to h) as the second
term, and the remainder as the last term.

• We now check for the continuity of the linear map

α : E −→ R

h 7−→
∫ 1

0

u(t)h(t) dt.

Let h ∈ E: ∣∣α(h)
∣∣ =

∣∣∣∣∫ 1

0

u(t)h(t) dt

∣∣∣∣
≤
∫ 1

0

∣∣u(t)
∣∣∣∣h(t)

∣∣dt Triangle inequality for integrals, 0 ≤ 1

≤
∫ 1

0

∣∣u(t)
∣∣‖h‖∞ dt since |h| ≤ ‖h‖∞

= ‖h‖∞
∫ 1

0

∣∣u(t)
∣∣ dt.

Hence α(h) −→
‖h‖∞→0

0 = α(0E), hence α is continuous at 0E , hence (since α is linear) α is continuous.

• We now check that the remainder is a o
(
‖h‖∞

)
as ‖h‖∞ → 0:∣∣∣∣∫ 1

0

h(t)2 dt

∣∣∣∣ ≤ ∫ 1

0

‖h‖2∞ dt = ‖h‖2∞ =
‖h‖∞→0

o
(
‖h‖∞

)
.

Hence q is differentiable at u and duq = α(u).

2. Let u ∈ E and t ∈ [0, 1]. Then:

∣∣ϕ(u)(t)
∣∣ ≤ ∣∣∣∣ωe−ωt

∫ t

0

u(s)eωs ds

∣∣∣∣
≤ ‖u‖∞

∣∣∣∣ωe−ωt
∫ t

0

eωs ds

∣∣∣∣
= ‖u‖∞

∣∣∣e−ωt[eωs]s=t
s=0

∣∣∣
= ‖u‖∞

∣∣e−ωt(eωt − 1
)∣∣

= ‖u‖∞
(
1− e−ωt

)
≤ ‖u‖∞

(
1− e−ω

)
.

Hence ∥∥ϕ(u)
∥∥ ≤ ‖u‖∞(1− e−ω

)
.

From the previous inequality we conclude that ϕ is continuous at 0E , and since ϕ is linear we conclude that ϕ
is continuous.



3. Let u ∈ E. Then: ∥∥ψ(u)
∥∥ = ω

∥∥u− ϕ(u)
∥∥
∞

≤ ω
(
‖u‖∞ +

∥∥ϕ(u)
∥∥
∞

)
by the triangle inequality

≤ ω
(
‖u‖∞ + ‖u‖∞

(
1− e−ω

))
from Question 2

= ω
(
2− e−ω

)
‖u‖∞.

Hence K = ω
(
2− e−ω

)
is such a value of K.

From the previous inequality, we conclude that ψ is continuous at 0E . Since ψ is linear, we conclude that ψ
is continuous. Hence ψ is a linear continuous map, and we can conclude that ψ is differentiable and that:

∀u ∈ E, duψ = ψ.

4. Notice that:

∀u ∈ E, W (u) =

∫ 1

0

(
1

ω
ψ(u)(t)

)2

dt =
1

ω2
q
(
ψ(u)

)
,

hence
W =

1

ω2
q ◦ ψ.

Since ψ and q are differentiable we conclude, by the Chain Rule, that W is differentiable and that:

∀u ∈ E, duW =
1

ω2
dψ(u)q ◦Duψ

=
1

ω2
dψ(u)q ◦ ψ.

More explicitly, for u ∈ E,
duW : E −→ R

h 7−→ 1

ω2

∫ 1

0

ψ(u)(t)ψ(h)(t)

.

Exercise 2.

1. Let v ∈ E, and define:
ϕ : R −→ R

t 7−→ f(P + tv).

Then, for t ∈ R:

ϕ(t) = P (0) + tv(0) +
(
P + tv)′(1)2

= P (0) + tv(0) +
(
P ′(1) + tv′(1)

)2
= P (0) + P ′(1)2 + t

(
v(0) + 2P ′(1)v′(1)

)
+ t2h′(1)2,

so that ϕ′(0) = v(0) + 2P ′(1)v′(1). This shows that ∇vf(P ) exists. We finally conclude:

∀v ∈ E, ∇vf(P ) = v(0) + 2P ′(1)v′(1).

2. In this case: v(0) = 2, v′ = −1 + 2X so that v′(1) = 1 and P ′0 = −2X so that P ′0(1) = −2. Hence:

∇vf(P0) = −2.

3. Assuming that f is differentiable at P , we have:

∀v ∈ E, dP f(v) = ∇vP,

hence:
dP f : E −→ R

v 7−→ v(0) + 2P ′(1)v′(1).



Exercise 3. Notice that f can be written as:

f : R2 −→ R

(x, y) 7−→


x4

x2 + y2
if (x, y) ∈ U

0 otherwise

with U = R2 \
{

(0, 0)
}
.

1. By elementary operations, f is continuous on Ů = U . We now check that continuity of f at (0, 0): let
(x, y) ∈ R2 \

{
(0, 0)

}
:

∣∣f(x, y)− f(0, 0)
∣∣ =

∣∣∣∣ x4

x2 + y2

∣∣∣∣ ≤ ‖(x, y)‖42
‖(x, y)‖22

= ‖(x, y)‖22 −→
‖(x,y)‖2→0

0.

Hence f is also continuous at (0, 0).

2. Let v = (a, b) ∈ R2 \
{

(0, 0)
}
. Then, for t ∈ R∗:

f(tv)− f(0, 0)

t
=

1

t

t4a4

t2(a2 + b2)
= t

a4

a2 + b2
−→
t→0

0.

Hence ∇vf(0, 0) = 0.

3. We know that the first-order partial derivatives of f at (0, 0) are directional derivative of f at (0, 0), hence
the first-partial derivatives of f at (0, 0) exist and we have:

∂1f(0, 0) = ∇e1f(0, 0) = 0 and ∂2f(0, 0) = ∇e2f(0, 0) = 0.

4. Let (x, y) ∈ R2 \
{

(0, 0)
}
. Then:

∂1f(x, y) =
2x3
(
x2 + 2y2

)(
x2 + y2

)2 and ∂2f(x, y) = − 2x4y(
x2 + y2

)2 .
Then: ∣∣∂1f(x, y)

∣∣ =

∣∣∣∣∣2x3
(
x2 + 2y2

)(
x2 + y2

)2
∣∣∣∣∣ ≤ 2

‖(x, y)‖32 × 2‖(x, y)‖22
‖(x, y)‖42

= 4‖(x, y)‖2 −→
‖(x,y)‖2→0

0

and ∣∣∂1f(x, y)
∣∣ =

∣∣∣∣∣− 2x4y(
x2 + y2

)2
∣∣∣∣∣ ≤ 2

‖(x, y)‖52
‖(x, y)‖42

= 2‖(x, y)‖2 −→
‖(x,y)‖2→0

0

Hence ∂1f and ∂2f are continuous at (0, 0).

5. Since ∂1f and ∂2f exist in a neighborhood of (0, 0) and are continuous at (0, 0), we conclude that f is
differentiable at (0, 0). Moreover:

d(0,0)f = ∂1f(0, 0)e′1 + ∂2f(0, 0)e′2 = 0L (R2,R)

(it’s the nil linear form on R2).

Exercise 4.

1. Let (x, y) ∈ R2. Then:

∂1g(x, y) = y ∂1f
(
xy, −x, y2

)
− ∂2f

(
xy, −x, y2

)
∂2g(x, y) = x ∂1f

(
xy, −x, y2

)
+ 2y ∂3f

(
xy, −x, y2

)
.

2. Since f is obtained from elementary operations and the function sin (which is of class C1), we conclude that
f is of class C1. More explicitly: for (x, y) ∈ R2,

∂1f(x, y) = sin(y) and ∂2f(x, y) = x cos(y) + 2y2



from which we notice that ∂1f and ∂2f are continuous. From these partial derivatives, we can write:

d(x,y)f = sin(y)e′1 +
(
x cos(y) + 2y2

)
e′2

or, equivalently,
d(x,y)f : R2 −→ R

(h1, h2) 7−→ sin(y)h1 +
(
x cos(y) + 2y2

)
h2.

3. Define the path p : t 7→ (t, t). Then lim
t→0

p(t) = (0, 0) and, for t ∈ R∗:

f
(
p(t)

)
= f(t, t) =

t2

2t2
=

1

2
−→
t→0

1

2
6= f

(
p(0)

)
= 0,

hence f is not continuous at (0, 0). We now compute the first-order partial derivatives of f at (0, 0):

f(t, 0)− f(0, 0)

t
=

0− 0

t
= 0 −→

t→0
0

and
f(0, t)− f(0, 0)

t
=

0− 0

t
= 0 −→

t→0
0,

hence ∂1f(0, 0) and ∂2f(0, 0) exist and:

∂1f(0, 0) = ∂2f(0, 0) = 0.


