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No documents, no calculators, no cell phones or electronic devices allowed. Cute and fluffy pets allowed (for moral
support only).

All your answers must be fully (but concisely) justified, unless noted otherwise.

Exercise 1. Let E = C'([0, 1], » € R}. Throughout this exercise, E is equipped with the co-norm, denoted by ||-/|o.
We define:

p: E— E
t
u+— (tl—-)(oe_“”/ u(s)e“"ds).
0

You're given that ¢ is well-defined, linear, and that for u € E, ¢(u) is the unique solution to the following initial value
problem:

@(u)(0) =0
Ve € [0,1], =g ()'(8) +p(u)(8) = u(t).

The differential equation can also be written in point-free form:

1 ; .
;qo(u) +o(u) =u.
We also define:
W: E— R

1
U —s f (u(®) — o(u) ()’ dz.
0
1. Preliminary question: show that the function

q: E— R
1
U — / u(t)®dr
0
is differentiable, and that for all u € E,

dig FE— R .
1
h— 2/ u(t) h(t) dt
0

2. Check that:

Vu € E, ”(p(u)”oo < Jlulleo (1 — €72).
Deduce that ¢ is continuous.

3. We define
1// . E = E
u — o) = o(u- o),
ie, ¥ = w(idg —¢@).

Show that there exists K € R, (and determine such a K) such that
Vu € E, ||y, < Kllulle.
Deduce that 1/ is differentiable and, for u € E, determine D, /.

. Show, using the Chain Rule, that W is differentiable and, for u € E, determine d,W.



Exercise 2. Let E = R[X] and let
f: E— R
P +—s P(0) + P’(1)%
LetP ¢ E. :

1. Show that all the directional derivatives of f at P exist, and determine them.
2. Letv=2-X+X? and P, = 1 — X2 Determine the value of the directional derivative V,f (Po) of f at P,

3. Assume that f is differentiable (with respect to a certain norm ||-||) at P. Determine dpf.
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Exercise 3. Let ' : . : ; e e by
ofi R: R S “ i
; :
x .
(xy) — {x2+y2 ‘f(x'y) + (0 0) i e Al

0 if(xy= @m
ik Show that f is continuous. ' :

"2 Show that for all v € R%\ {(0 0)} the d1rect10nal denvatlve Vo,
. determme 1tsy_value-

© o) of £ at (0,0) in the direction o exists, and




