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Exercise 1.

1. a) By the Magic Lemma, the radius of convergence of
∑
n anz

n is that of
∑
n 2nzn =

∑
n(2z)n, namely

R = 1/2.
For x ∈ (−1/2, 1/2) \ {0}:

f(x) =

+∞∑
n=0

(2x)n

n+ 1
=

+∞∑
n=1

(2x)n−1

n
=

1

2x

+∞∑
n=1

(2x)n

n
=
− ln(1− 2x)

2x
.

In the case x = 0, f(x) = a0 = 1 so that

∀x ∈ (−1/2, 1/2), f(x) =


ln(1 + 2x)

2x
if x 6= 0

1 if x = 0

b) From the power series expansion of f we have the following second-order Taylor–Young expansion:

f(x) =
x→0

a0 + a1x+ a2x
2 + o

(
x2
)

=
x→0

1 + x+
4

3
x2 + o

(
x2
)

from which we conclude that an equation of the tangent line to the graph of f at 0 is

y = 1 + x

and since 4/3 > 0 we conclude that the graph of f lies above ∆ in a neighborhood of 0.

2. a) By the Magic Lemma, the radius of convergence of this power series is that of
∑
n cos(2πn/5)zn. Now for

z0 = 1, the sequence
(
cos(2πn/5)zn0

)
n
is bounded hence, by Abel’s Lemma, R ≥ 1.

b) Since n cos(2πn/5) X−→
n→+∞

0 we conclude that the series
∑
n n cos(2πn/5) diverges, hence R ≤ 1.

Finally we conclude that R = 1.

3. a) R = 1 and

∀x ∈ (−1, 1), f(x) =
1

1 + x
=

+∞∑
n=0

(−1)nxn.

b) Observe that

∀x ∈ R \ {−1}, g(x) = 1− 3

x+ 1
= 1− 3f(x)

hence the radius of convergence of g is that of f , and the domain of convergence of its power series is that
of f too. Hence

∀x ∈ (−1, 1), g(x) =

+∞∑
n=0

anx
n

where

∀n ∈ N, an =

{
−2 if n = 0

−3(−1)n if n 6= 0

4. a) We know that

∀t ∈ R, e−t
3

=

+∞∑
p=0

(−t)3

p!

(the radius of convergence of this power series is R = +∞) hence, by term by term integration:

∀x ∈ R, F (x) =

+∞∑
p=0

∫ x

0

(−1)pt3p

p!
dt =

+∞∑
p=0

(−1)p
x3p+1

p!(3p+ 1)



The sequence (an)n∈N to determine is hence:

∀n ∈ N, an =

(−1)p
1

p!(3p+ 1)
if n = 3p+ 1 for p ∈ N

0 otherwise

b) The series defining F (1) is an alternating series:

F (1) =

+∞∑
p=0

(−1)p
1

p!(3p+ 1)

and satisfies the alternating series test. Hence, for all P ∈ N,∣∣∣∣∣∣
+∞∑

p=P+1

(−1)p
1

p!(3p+ 1)

∣∣∣∣∣∣ ≤ 1

(P + 1)!(3P + 4)

so we only need to find P such that

1

(P + 1)!(3P + 4)
≤ 10−3

i.e.,
(P + 1)!(3P + 4) ≥ 1000.

If we take P = 4 we have:

(P + 1)!(3P + 4) = 5!× 16 = 120× 16 > 1000.

We can hence take N = 3P + 1 = 13.

Exercise 2.

1. a0 = y(0) = 0 (by the initial condition).

For x ∈ (−R,R),

y′(x) =

+∞∑
n=1

nanx
n−1 =

+∞∑
n=0

(n+ 1)an+1x
n,

so that

xy′(x) =

+∞∑
n=1

nanx
n =

+∞∑
n=0

nanx
n

and

(x− 1)y′(x) + y(x) = xy′(x)− y′(x) + y(x) =

+∞∑
n=0

(
nan − (n+ 1)an+1 + an

)
xn =

+∞∑
n=0

(n+ 1)(an − an+1)xn.

The right hand side of the differential equation has the following power series expansion:

∀x ∈ (−1, 1),
1

x+ 1
=

+∞∑
n=0

(−1)nxn

hence we must have:

∀x ∈ (−R,R) ∩ (−1, 1),

+∞∑
n=0

(n+ 1)(an − an+1) =

+∞∑
n=0

(−1)nxn

and we conclude, by the Identity Theorem, that

∀n ∈ N, (n+ 1)(an − an+1) = (−1)n,



i.e.,

∀n ∈ N, an+1 − an =
(−1)n+1

n+ 1
.

Hence, using a telescopic sum and the fact that a0 = 0:

∀n ∈ N∗, an = a0 +

n−1∑
k=0

(ak+1 − ak) =

n−1∑
k=0

(−1)k+1

k + 1
=

n∑
k=1

(−1)k

k
.

2. a) We know that

∀x ∈ (−1, 1], ln(1 + x) =

+∞∑
n=1

(−1)n

n
xn

(and that the radius of convergence of the power series is 1) hence:

∀x ∈ (−1, 1], S(x) = − ln(1 + x).

and r = 1. This series converges for x = 1 (its the alternating harmonic series).
b) lim

n→+∞
an = S(1) = ln(2).

c) Let z ∈ C∗. Then ∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ =
an+1

an
|z| −→

n→+∞

ln(2)

ln(2)
|z| = |z|

from which we conclude (by the Ratio Test) that R = 1.

3. a) i) D = (−1, 1) ∪ (1,+∞).
ii) Let x ∈ D. Then

f ′(x) =
1

(x− 1)(x+ 1)
− ln(1 + x)

(x− 1)2

hence
(x− 1)f ′(x) + f(x) =

1

x+ 1
− ln(1 + x)

x− 1
+

ln(1 + x)

x− 1
=

1

x+ 1
.

Moreover, f(0) = 0. Hence f is solution of Problem (P) on D.
b) Since f admits a power series expansion with a non-nil radius of convergence, we conclude that Rf = R = 1

and that

∀x ∈ (−1, 1), f(x) = y(x) =

+∞∑
n=0

anx
n.

Exercise 3.

1. (1) Define

∀n ∈ N, un =
2n√
n!
.

The sequence (un)n∈N is a sequence with positive terms, and we can use the ratio test:

un+1

un
=

2n+1√
(n+ 1)!

√
n!

2n
=

2√
n+ 1

−→
n→+∞

0 < 1

hence Series (1) converges.
(2) Define

∀n ∈ N∗, un = ln
(

1 +
cosn

n2

)
.

Then, since cos is bounded, we have cos(n)/n2 −→
n→+∞

0, and hence

|un| ∼
n→+∞

|cosn|
n2

.

Now
∀n ∈ N∗, 0 ≤ |cosn|

n2
≤ 1

n2

and 1/n2 is the general term of a convergent series (by Riemann with α = 2 > 1) hence, by the Comparison
Test, Series (2) converges absolutely, hence converges.



(3) Define

∀n ∈ N∗, vn = (−1)n
(√
n+ 1−

√
n
)

=
(−1)n√

n+ 1 +
√
n
.

We notice that (vn)n∈N∗ is an alternating sequence, that
(
|vn|

)
n∈N∗ is decreasing and that vn −→

n→+∞
0.

Hence, by the alternating series test, Series (3) converges.

2. Since α > 0 we have (−1)n/nα −→
n→+∞

0 and hence:

exp

(
(−1)n

nα

)
=

n→+∞
1 +

(−1)n

nα
+

1

2n2α
+

(−1)n

3!n3α
+

1

4!n4α
+ o

(
1

n4α

)
,

hence
un = exp

(
(−1)n

nα

)
− 1− 1

2n2α
=

n→+∞

(−1)n

nα
+

(−1)n

3!n3α
+

1

4!n4α
+ o

(
1

n4α

)
,

Define the sequences (an)n∈N and (bn)n∈N as:

∀n ∈ N, an =
(−1)n

nα
+

(−1)n

3!n3α
, bn = un − an.

Since α > 0,
∑
n(−1)n/nα and

∑
n(−1)n/n3α are convergent series (alternating Riemann series), hence∑

n an converges. Now

bn =
n→+∞

1

4!n4α
+ o

(
1

n4α

)
∼

n→+∞

1

4!n4α
> 0,

hence, by the equivalent test,
∑
n bn converges if and only if 4α > 1, i.e., if and and only if α > 1/4. We

hence conclude that Series (3) converges if and only if α > 1/4.

Exercise 4.

1.
1

1 + n3
∼

n→+∞

1

n3
> 0

hence, by the equivalent test, the series defining S converges, hence S is well-defined.

Since the general term of the series defining S is positive, the sequence (SN )N∈N is increasing, hence S−SN > 0.

We now use the Integral Comparison Test: the function

f : R+ −→ R

x 7−→ 1

1 + x3

is non-negative and decreasing hence, for N ∈ N,

S − SN =

+∞∑
n=N+1

1

1 + n3
≤
∫ +∞

N

f(x) dx ≤
∫ +∞

N

dx

x3
=

1

2N2
.

2. We hence have:
S1000 ≤ S ≤ S1000 +

1

2 · 10002
= S1000 + 5 · 10−7.

From the value for S1000 given, we conclude that

1.6865028 < S1000 < 1.6865029

so that
1.6865028 < S1000 ≤ S ≤ 1.6865029 + 5 · 10−7 = 1.6865034

so that
S = 1.68650 . . .

(and the next digit is either 2 or 3).


