Exercise 1.

1. a) By the Magic Lemma, the radius of convergence of $\sum_{n} a_{n} z^{n}$ is that of $\sum_{n} 2^{n} z^{n}=\sum_{n}(2 z)^{n}$, namely $R=1 / 2$.
For $x \in(-1 / 2,1 / 2) \backslash\{0\}$:

$$
f(x)=\sum_{n=0}^{+\infty} \frac{(2 x)^{n}}{n+1}=\sum_{n=1}^{+\infty} \frac{(2 x)^{n-1}}{n}=\frac{1}{2 x} \sum_{n=1}^{+\infty} \frac{(2 x)^{n}}{n}=\frac{-\ln (1-2 x)}{2 x}
$$

In the case $x=0, f(x)=a_{0}=1$ so that

$$
\forall x \in(-1 / 2,1 / 2), f(x)= \begin{cases}\frac{\ln (1+2 x)}{2 x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

b) From the power series expansion of f we have the following second-order Taylor-Young expansion:

$$
f(x) \underset{x \rightarrow 0}{=} a_{0}+a_{1} x+a_{2} x^{2}+o\left(x^{2}\right) \underset{x \rightarrow 0}{=} 1+x+\frac{4}{3} x^{2}+o\left(x^{2}\right)
$$

from which we conclude that an equation of the tangent line to the graph of f at 0 is

$$
y=1+x
$$

and since $4 / 3>0$ we conclude that the graph of f lies above Δ in a neighborhood of 0 .
2. a) By the Magic Lemma, the radius of convergence of this power series is that of $\sum_{n} \cos (2 \pi n / 5) z^{n}$. Now for $z_{0}=1$, the sequence $\left(\cos (2 \pi n / 5) z_{0}^{n}\right)_{n}$ is bounded hence, by Abel's Lemma, $R \geq 1$.
b) Since $n \cos (2 \pi n / 5) \underset{n \rightarrow+\infty}{\rightarrow} 0$ we conclude that the series $\sum_{n} n \cos (2 \pi n / 5)$ diverges, hence $R \leq 1$.

Finally we conclude that $R=1$.
3. a) $R=1$ and

$$
\forall x \in(-1,1), f(x)=\frac{1}{1+x}=\sum_{n=0}^{+\infty}(-1)^{n} x^{n}
$$

b) Observe that

$$
\forall x \in \mathbb{R} \backslash\{-1\}, g(x)=1-\frac{3}{x+1}=1-3 f(x)
$$

hence the radius of convergence of g is that of f, and the domain of convergence of its power series is that of f too. Hence

$$
\forall x \in(-1,1), g(x)=\sum_{n=0}^{+\infty} a_{n} x^{n}
$$

where

$$
\forall n \in \mathbb{N}, a_{n}= \begin{cases}-2 & \text { if } n=0 \\ -3(-1)^{n} & \text { if } n \neq 0\end{cases}
$$

4. a) We know that

$$
\forall t \in \mathbb{R}, \mathrm{e}^{-t^{3}}=\sum_{p=0}^{+\infty} \frac{(-t)^{3}}{p!}
$$

(the radius of convergence of this power series is $R=+\infty$) hence, by term by term integration:

$$
\forall x \in \mathbb{R}, F(x)=\sum_{p=0}^{+\infty} \int_{0}^{x} \frac{(-1)^{p} t^{3 p}}{p!} \mathrm{d} t=\sum_{p=0}^{+\infty}(-1)^{p} \frac{x^{3 p+1}}{p!(3 p+1)}
$$

The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ to determine is hence:

$$
\forall n \in \mathbb{N}, a_{n}= \begin{cases}(-1)^{p} \frac{1}{p!(3 p+1)} & \text { if } n=3 p+1 \text { for } p \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

b) The series defining $F(1)$ is an alternating series:

$$
F(1)=\sum_{p=0}^{+\infty}(-1)^{p} \frac{1}{p!(3 p+1)}
$$

and satisfies the alternating series test. Hence, for all $P \in \mathbb{N}$,

$$
\left|\sum_{p=P+1}^{+\infty}(-1)^{p} \frac{1}{p!(3 p+1)}\right| \leq \frac{1}{(P+1)!(3 P+4)}
$$

so we only need to find P such that

$$
\frac{1}{(P+1)!(3 P+4)} \leq 10^{-3}
$$

i.e.,

$$
(P+1)!(3 P+4) \geq 1000
$$

If we take $P=4$ we have:

$$
(P+1)!(3 P+4)=5!\times 16=120 \times 16>1000 .
$$

We can hence take $N=3 P+1=13$.

Exercise 2.

1. $a_{0}=y(0)=0$ (by the initial condition).

For $x \in(-R, R)$,

$$
y^{\prime}(x)=\sum_{n=1}^{+\infty} n a_{n} x^{n-1}=\sum_{n=0}^{+\infty}(n+1) a_{n+1} x^{n}
$$

so that

$$
x y^{\prime}(x)=\sum_{n=1}^{+\infty} n a_{n} x^{n}=\sum_{n=0}^{+\infty} n a_{n} x^{n}
$$

and
$(x-1) y^{\prime}(x)+y(x)=x y^{\prime}(x)-y^{\prime}(x)+y(x)=\sum_{n=0}^{+\infty}\left(n a_{n}-(n+1) a_{n+1}+a_{n}\right) x^{n}=\sum_{n=0}^{+\infty}(n+1)\left(a_{n}-a_{n+1}\right) x^{n}$.
The right hand side of the differential equation has the following power series expansion:

$$
\forall x \in(-1,1), \frac{1}{x+1}=\sum_{n=0}^{+\infty}(-1)^{n} x^{n}
$$

hence we must have:

$$
\forall x \in(-R, R) \cap(-1,1), \sum_{n=0}^{+\infty}(n+1)\left(a_{n}-a_{n+1}\right)=\sum_{n=0}^{+\infty}(-1)^{n} x^{n}
$$

and we conclude, by the Identity Theorem, that

$$
\forall n \in \mathbb{N},(n+1)\left(a_{n}-a_{n+1}\right)=(-1)^{n}
$$

i.e.,

$$
\forall n \in \mathbb{N}, a_{n+1}-a_{n}=\frac{(-1)^{n+1}}{n+1}
$$

Hence, using a telescopic sum and the fact that $a_{0}=0$:

$$
\forall n \in \mathbb{N}^{*}, a_{n}=a_{0}+\sum_{k=0}^{n-1}\left(a_{k+1}-a_{k}\right)=\sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{k+1}=\sum_{k=1}^{n} \frac{(-1)^{k}}{k}
$$

2. a) We know that

$$
\forall x \in(-1,1], \ln (1+x)=\sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n} x^{n}
$$

(and that the radius of convergence of the power series is 1) hence:

$$
\forall x \in(-1,1], S(x)=-\ln (1+x)
$$

and $r=1$. This series converges for $x=1$ (its the alternating harmonic series).
b) $\lim _{n \rightarrow+\infty} a_{n}=S(1)=\ln (2)$.
c) Let $z \in \mathbb{C}^{*}$. Then

$$
\left|\frac{a_{n+1} z^{n+1}}{a_{n} z^{n}}\right|=\frac{a_{n+1}}{a_{n}}|z| \underset{n \rightarrow+\infty}{\longrightarrow} \frac{\ln (2)}{\ln (2)}|z|=|z|
$$

from which we conclude (by the Ratio Test) that $R=1$.
3. a) i) $D=(-1,1) \cup(1,+\infty)$.
ii) Let $x \in D$. Then

$$
f^{\prime}(x)=\frac{1}{(x-1)(x+1)}-\frac{\ln (1+x)}{(x-1)^{2}}
$$

hence

$$
(x-1) f^{\prime}(x)+f(x)=\frac{1}{x+1}-\frac{\ln (1+x)}{x-1}+\frac{\ln (1+x)}{x-1}=\frac{1}{x+1} .
$$

Moreover, $f(0)=0$. Hence f is solution of Problem (P) on D.
b) Since f admits a power series expansion with a non-nil radius of convergence, we conclude that $R_{f}=R=1$ and that

$$
\forall x \in(-1,1), f(x)=y(x)=\sum_{n=0}^{+\infty} a_{n} x^{n}
$$

Exercise 3.

1. (1) Define

$$
\forall n \in \mathbb{N}, u_{n}=\frac{2^{n}}{\sqrt{n!}}
$$

The sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a sequence with positive terms, and we can use the ratio test:

$$
\frac{u_{n+1}}{u_{n}}=\frac{2^{n+1}}{\sqrt{(n+1)!}} \frac{\sqrt{n!}}{2^{n}}=\frac{2}{\sqrt{n+1}} \underset{n \rightarrow+\infty}{\longrightarrow} 0<1
$$

hence Series (1) converges.
(2) Define

$$
\forall n \in \mathbb{N}^{*}, u_{n}=\ln \left(1+\frac{\cos n}{n^{2}}\right)
$$

Then, since \cos is bounded, we have $\cos (n) / n^{2} \underset{n \rightarrow+\infty}{\longrightarrow} 0$, and hence

$$
\left|u_{n}\right| \underset{n \rightarrow+\infty}{\sim} \frac{|\cos n|}{n^{2}} .
$$

Now

$$
\forall n \in \mathbb{N}^{*}, 0 \leq \frac{|\cos n|}{n^{2}} \leq \frac{1}{n^{2}}
$$

and $1 / n^{2}$ is the general term of a convergent series (by Riemann with $\alpha=2>1$) hence, by the Comparison Test, Series (2) converges absolutely, hence converges.
(3) Define

$$
\forall n \in \mathbb{N}^{*}, v_{n}=(-1)^{n}(\sqrt{n+1}-\sqrt{n})=\frac{(-1)^{n}}{\sqrt{n+1}+\sqrt{n}}
$$

We notice that $\left(v_{n}\right)_{n \in \mathbb{N}^{*}}$ is an alternating sequence, that $\left(\left|v_{n}\right|\right)_{n \in \mathbb{N}^{*}}$ is decreasing and that $v_{n} \underset{n \rightarrow+\infty}{\longrightarrow} 0$. Hence, by the alternating series test, Series (3) converges.
2. Since $\alpha>0$ we have $(-1)^{n} / n^{\alpha} \underset{n \rightarrow+\infty}{\longrightarrow} 0$ and hence:

$$
\exp \left(\frac{(-1)^{n}}{n^{\alpha}}\right) \underset{n \rightarrow+\infty}{=} 1+\frac{(-1)^{n}}{n^{\alpha}}+\frac{1}{2 n^{2 \alpha}}+\frac{(-1)^{n}}{3!n^{3 \alpha}}+\frac{1}{4!n^{4 \alpha}}+o\left(\frac{1}{n^{4 \alpha}}\right)
$$

hence

$$
u_{n}=\exp \left(\frac{(-1)^{n}}{n^{\alpha}}\right)-1-\frac{1}{2 n^{2 \alpha}} \underset{n \rightarrow+\infty}{=} \frac{(-1)^{n}}{n^{\alpha}}+\frac{(-1)^{n}}{3!n^{3 \alpha}}+\frac{1}{4!n^{4 \alpha}}+o\left(\frac{1}{n^{4 \alpha}}\right)
$$

Define the sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ as:

$$
\forall n \in \mathbb{N}, a_{n}=\frac{(-1)^{n}}{n^{\alpha}}+\frac{(-1)^{n}}{3!n^{3 \alpha}}, \quad b_{n}=u_{n}-a_{n}
$$

Since $\alpha>0, \sum_{n}(-1)^{n} / n^{\alpha}$ and $\sum_{n}(-1)^{n} / n^{3 \alpha}$ are convergent series (alternating Riemann series), hence $\sum_{n} a_{n}$ converges. Now

$$
b_{n} \underset{n \rightarrow+\infty}{=} \frac{1}{4!n^{4 \alpha}}+o\left(\frac{1}{n^{4 \alpha}}\right) \underset{n \rightarrow+\infty}{\sim} \frac{1}{4!n^{4 \alpha}}>0
$$

hence, by the equivalent test, $\sum_{n} b_{n}$ converges if and only if $4 \alpha>1$, i.e., if and and only if $\alpha>1 / 4$. We hence conclude that Series (3) converges if and only if $\alpha>1 / 4$.

Exercise 4.

1.

$$
\frac{1}{1+n^{3}} \underset{n \rightarrow+\infty}{\sim} \frac{1}{n^{3}}>0
$$

hence, by the equivalent test, the series defining S converges, hence S is well-defined.
Since the general term of the series defining S is positive, the sequence $\left(S_{N}\right)_{N \in \mathbb{N}}$ is increasing, hence $S-S_{N}>0$. We now use the Integral Comparison Test: the function

$$
\begin{aligned}
f: \mathbb{R}_{+} & \longrightarrow \mathbb{R} \\
x & \longmapsto \frac{1}{1+x^{3}}
\end{aligned}
$$

is non-negative and decreasing hence, for $N \in \mathbb{N}$,

$$
S-S_{N}=\sum_{n=N+1}^{+\infty} \frac{1}{1+n^{3}} \leq \int_{N}^{+\infty} f(x) \mathrm{d} x \leq \int_{N}^{+\infty} \frac{\mathrm{d} x}{x^{3}}=\frac{1}{2 N^{2}}
$$

2. We hence have:

$$
S_{1000} \leq S \leq S_{1000}+\frac{1}{2 \cdot 1000^{2}}=S_{1000}+5 \cdot 10^{-7}
$$

From the value for S_{1000} given, we conclude that

$$
1.6865028<S_{1000}<1.6865029
$$

so that

$$
1.6865028<S_{1000} \leq S \leq 1.6865029+5 \cdot 10^{-7}=1.6865034
$$

so that

$$
S=1.68650 \ldots
$$

(and the next digit is either 2 or 3).

