Written exam number 1, 23th of October, 2023

Mathematics, SCAN $2^{\text {ND }}$ yEAR, 2023-2024

Duration: 1:30.
No document allowed, no calculation tool allowed.
Exercises are independent and can be treated in any order.

Exercise 1. Nature of some improper integrals ($\sim 4 p t s$)

Determine the nature (convergence) of the following improper integrals.

1. $\int_{1}^{+\infty} \frac{1}{\sqrt{t}} \ln \left(1+\frac{1}{t}\right) d t$
2. $\int_{1}^{+\infty} \frac{2+\sin (t)}{\sqrt{t}} d t$
3. $\int_{0}^{+\infty} \frac{\cos (t)}{\sqrt{e^{t}-1}} d t$

Exercise 2. A sequence of improper integrals (\sim 5pts)

For n in \mathbb{N}, let us consider the integral $I_{n}=\int_{0}^{1} \frac{(\ln t)^{n}}{\sqrt{t}} d t$.

1. Determine the nature (convergence) of I_{0}, and then of I_{n} for every n in \mathbb{N}.
2. Calculate the value of I_{0}.
3. Using an integration by parts, find (for $n \geq 1$) a relation between I_{n} and I_{n-1} (an expression of I_{n} in terms of I_{n-1}).
4. Deduce from this relation the value of I_{n}.

Exercise 3. Numerical series (~ 5pts)

1. Let $\sum_{n} u_{n}$ and $\sum_{n} v_{n}$ denote series of real numbers. Qualify each of the following statements as true or false, and, if false, provide a counterexample (no additional comment is required, just "True" if true or a counterexample if false).
a) $u_{n} \underset{n \rightarrow+\infty}{\sim} v_{n}$ and $\sum_{n} v_{n}$ converges $\Longrightarrow \sum_{n} u_{n}$ converges.
b) $u_{n}=\underset{n \rightarrow+\infty}{o}\left(v_{n}\right)$ and $\sum_{n} v_{n}$ converges $\Longrightarrow \sum_{n} u_{n}$ converges.
c) $u_{n} \geq 0$ for all n and $\sum_{n}^{n} u_{n}$ converges $\Longrightarrow \sum_{n}^{n} u_{2 n}$ converges.
2. For the (converging) series $\sum_{k \geq 1} \frac{(-1)^{k}}{k^{2}}$, find n large enough so that the remainder associated with the partial sum S_{n} be not larger than 0.01 (justify).
3. Only one among the following two statements is true; provide a counterexample to the wrong statement (drawing with explanations welcomed).
4. If a series $\sum_{n} u_{n}$ converges, then $u_{n} \rightarrow 0$ as $n \rightarrow+\infty$.
5. If the improper integral $\int_{0}^{+\infty} f(x) d x$ converges (f being a continuous function $[0,+\infty$) \rightarrow $\mathbb{R})$, then $f(x) \rightarrow 0$ as $x \rightarrow+\infty$.

Exercise 4. Series-integral comparison (~ 6.5pts)
Let us consider a function $f:[1,+\infty) \rightarrow \mathbb{R}$ which is, on $[1,+\infty)$,

- piecewise continuous, • and positive, • and non-increasing.

1. a) Let k and n denote integers with $k \geq 1$ and $n \geq 2$. Using the sub-figures of figure 1 , provide lower and upper bounds for the integrals:

$$
\int_{k}^{k+1} f(x) d x \text { and } \int_{1}^{n} f(x) d x
$$

in terms of general terms or partial sums of the series $\sum_{k \geq 1} f(k)$.
b) Which statement (from the course) can you deduce from these bounds? (justify).
2. For k in \mathbb{N}^{*}, let us consider the quantity: $\delta_{k}=f(k)-\int_{k}^{k+1} f(x) d x$.
a) On figure 1a, identify (directly on the figure) the domain with area δ_{k}.
b) On figure 1c, identify (directly on the figure) the domain with area $\sum_{k=1}^{n-1} \delta_{k}$.
c) Prove the inequality

$$
\begin{equation*}
\sum_{k=1}^{n-1} \delta_{k} \leq f(1)-f(n) \tag{1}
\end{equation*}
$$

and explain how this inequality can be visualized on figure 1c.
d) Deduce from inequality (1) that the series $\sum_{k \geq 1} \delta_{k}$ converges.
3. Let us consider the quantity Δ defined as the sum of the series $\sum_{k \geq 1} \delta_{k}$, and let us denote by $\left(R_{n}\right)_{n \geq 1}$ the sequence of its remainders:

$$
\Delta=\sum_{k=1}^{+\infty} \delta_{k} \quad \text { and } \quad R_{n}=\sum_{k=n+1}^{+\infty} \delta_{k}
$$

a) Prove that

$$
\begin{equation*}
\sum_{k=1}^{n-1} f(k)=\int_{1}^{n} f(x) d x+\Delta-R_{n-1} \tag{2}
\end{equation*}
$$

b) Deduce from this equality an asymptotic expansion for the partial sum of the harmonic series.

Figure 1

Short answers for exercise 1

1. The integral is improper at $+\infty$. Since

$$
\frac{1}{\sqrt{t}} \ln \left(1+\frac{1}{t}\right) \underset{t \rightarrow+\infty}{\sim} \frac{1}{t^{3 / 2}}
$$

it follows from the equivalent test (Riemann test for integrals) that the integral converges.
2. The integral is improper at $+\infty$. Since, for every t in $[1,+\infty)$,

$$
\frac{1}{\sqrt{t}} \leq \frac{2+\sin (t)}{\sqrt{t}}
$$

it follows from the comparison test (Riemann test for integrals) that the integral diverges.
3. The integral is improper at 0 and at $+\infty$. At 0 , since

$$
\frac{\cos (t)}{\sqrt{e^{t}-1}} \underset{t \rightarrow 0^{+}}{\sim} \frac{1}{\sqrt{t}}
$$

it follows from the equivalent test (Riemann test for integrals) that the integral converges (at 0); at $+\infty$,

$$
\left|\frac{\cos (t)}{\sqrt{e^{t}-1}}\right| \leq \frac{1}{\sqrt{e^{t}-1}}
$$

and

$$
\frac{1}{\sqrt{e^{t}-1}} \underset{t \rightarrow+\infty}{\sim} \frac{1}{\sqrt{e^{t}}}=e^{-t / 2}
$$

and

$$
e^{-t / 2}=\underset{t \rightarrow+\infty}{o}\left(\frac{1}{t^{2}}\right)
$$

it follows from the comparison test that the integral is absolutely convergent, thus convergent (at $+\infty)$. Conclusion: the integral is convergent at 0 and at $+\infty$, it is therefore convergent.

Short answers for exercise 2

1. The integral I_{n} (be it for $n=0$ or for $n>0$) is improper at 0 . The integral I_{0} is convergence (Riemann reference function). Concerning I_{n}, for every quantity α in $(1 / 2,1)$,

$$
\left|\frac{(\ln t)^{n}}{\sqrt{t}}\right|=\underset{t \rightarrow 0^{+}}{o}\left(\frac{1}{t^{\alpha}}\right),
$$

and it follows from this equality that the integral is convergent (little oh test, comparison to Riemann reference integral). This equality holds because, for every t in $(0,+\infty)$,

$$
\left|t^{\alpha} \frac{(\ln t)^{n}}{\sqrt{t}}\right|=t^{\alpha-1 / 2}(\ln t)^{n}
$$

and since $\alpha-1 / 2>0$, this last expression goes to 0 as $t \rightarrow 0^{+}$.
2.

$$
\begin{aligned}
I_{0} & =\lim _{x \rightarrow 0^{+}} \int_{x}^{1} \frac{1}{\sqrt{t}} d t \\
& =\lim _{x \rightarrow 0^{+}}[2 \sqrt{t}]_{x}^{1} \\
& =\lim _{x \rightarrow 0^{+}} 2-2 \sqrt{x} \\
& =2 .
\end{aligned}
$$

3. Integration by parts: for every n in \mathbb{N}^{*} and for every x in $(0,1]$,

$$
\begin{aligned}
\int_{x}^{1} \frac{(\ln t)^{n}}{\sqrt{t}} d t & =\left[2 \sqrt{t}(\ln t)^{n}\right]_{x}^{1}-\int_{x}^{1} 2 \sqrt{t n} \frac{(\ln t)^{n-1}}{t} d t \\
& =-2 \sqrt{x}(\ln x)^{n}-2 n \int_{x}^{1} \frac{(\ln t)^{n-1}}{\sqrt{t}} d t
\end{aligned}
$$

so that, passing to the limit as $x \rightarrow 0^{+}$,

$$
I_{n}=-2 n I_{n-1}
$$

4. According to this relation, for every n in \mathbb{N},

$$
I_{n}=(-2)^{n} n!I_{0}=2(-2)^{n} n!=(-1)^{n} 2^{n+1} n!
$$

Short answers for exercise 3

1. a) False: $u_{n}=\frac{(-1)^{n}}{\sqrt{n}}+\frac{1}{n}$ and $v_{n}=\frac{(-1)^{n}}{\sqrt{n}}$.
b) False: $u_{n}=\frac{1}{n}$ and $v_{n}=\frac{(-1)^{n}}{\sqrt{n}}$.
c) True.
2. The alternating series test holds for this series. It follows that, for every n in \mathbb{N}^{*},

$$
\left|R_{n}\right| \leq\left|u_{n+1}\right|=\frac{1}{(n+1)^{2}}
$$

and

$$
\frac{1}{(n+1)^{2}} \leq 0.01 \Longleftrightarrow n+1 \geq 10 \Longleftrightarrow n \geq 9
$$

Thus $n=9$ is large enough to ensure the intended upper bound on the remainder.
3. Statement 1 is true (n-th term test). Statement 2 is false, for instance choose f as the piecewise affine continuous function defined by: f vanishes on $[0,1]$ and, for every positive integer n,

$$
f(x) \begin{cases}\text { equals } 0 & \text { if } n \leq x \leq n+1-\frac{1}{n^{2}} \\ \text { increases with slope } n^{2} & \text { if } n+1-\frac{1}{n^{2}} \leq x \leq n+1-\frac{1}{2 n^{2}}, \\ \text { decreases with slope } n^{2} & \text { if } n+1-\frac{1}{2 n^{2}} \leq x \leq n+1\end{cases}
$$

According to this definition, for every n in \mathbb{N},

$$
f\left(n+1-\frac{1}{2 n^{2}}\right)=\frac{1}{2}
$$

so that $f(x) \nrightarrow 0$ as $x \rightarrow+\infty$. On the other hand, still according to this definition,

$$
\int_{n}^{n+1} f(x) d x=\frac{1}{4 n^{2}}
$$

and since the series $\sum_{n \geq 1} \frac{1}{4 n^{2}}$ converges, it follows that the improper integral $\int_{0}^{+\infty} f(x) d x$ converges.

Short answers for exercise 4

1.

a) According to figure 1a (or integrating the inequality $f(k+1) \leq f(x) \leq f(k)$ on interval $[k, k+1]$),

$$
\begin{equation*}
f(k+1) \leq \int_{k}^{k+1} f(x) d x \leq f(k) \tag{3}
\end{equation*}
$$

and summing this inequality between $k=1$ and $k=n-1$ (or according to figure 1 c)

$$
\sum_{k=1}^{n-1} f(k+1) \leq \int_{1}^{n} f(x) d x \leq \sum_{k=1}^{n-1} f(k)
$$

or equivalently, in terms of the partial sums S_{n} of the series $\sum_{k \geq 1} f(k)$,

$$
\begin{equation*}
S_{n}-f(1) \leq \int_{1}^{n} f(x) d x \leq S_{n-1} \tag{4}
\end{equation*}
$$

b) The left inequality shows that, if the improper integral $\int_{1}^{+\infty} f(x) d x$ converges, then the series $\sum_{k \geq 1} f(k)$ converges. The right inequality shows that, if the series $\sum_{k \geq 1} f(k)$ converges, then the improper integral $\int_{1}^{+\infty} f(x) d x$ converges. In short, the improper integral and the series are of the same nature.
2. a) Small "triangle-like" domains between the graph and the horizontal line at height $f(k)$, for abscissa between k and $k+1$.
b) The union of all these "triangle-like" domains, for abscissa between 1 and n.
c) According to inequalities (3),

$$
0 \leq \delta_{k} \leq f(k)-f(k+1)
$$

so that, summing these inequalities for k in $\{1, \ldots, n-1\}$,

$$
0 \leq \sum_{k=1}^{n-1} \delta_{k} \leq f(1)-f(n)
$$

and this last inequality is nothing but the intended inequality (1). These two steps show on figure 1c.
d) It follows from inequality (1) that

$$
\sum_{k=1}^{n-1} \delta_{k} \leq f(1)
$$

and since the terms δ_{k} are nonnegative, it follows that $\sum_{k} \delta_{k}$ converges.
3. a)

$$
\begin{aligned}
\sum_{k=1}^{n-1} f(k) & =\sum_{k=1}^{n-1}\left(f(k)-\int_{k}^{k+1} f(x) d x+\int_{k}^{k+1} f(x) d x\right) \\
& =\sum_{k=1}^{n-1} \delta_{k}+\int_{1}^{n} f(x) d x,
\end{aligned}
$$

and since (according to the definition of the remainder)

$$
\Delta=\sum_{k=1}^{n-1} \delta_{k}+R_{n-1}
$$

the intended equality (2) follows.
b) If f is the function $x \mapsto 1 / x$, then equality (2) reads:

$$
\sum_{k=1}^{n-1} \frac{1}{k}=\ln (n)+\Delta-R_{n-1}
$$

or in other words, since the remainder R_{n-1} goes to 0 as n goes to $+\infty$,

$$
\sum_{k=1}^{n-1} \frac{1}{k}=\ln (n)+\Delta+\underset{n \rightarrow+\infty}{o}(1)
$$

or equivalently,

$$
\sum_{k=1}^{n} \frac{1}{k}=\ln (n)+\Delta+\underset{n \rightarrow+\infty}{o}(1)
$$

Of course, the quantity Δ has a specific value for each function f. For $f(x)=1 / x$ (the harmonic series), this quantity is usually written γ (Euler-Mascheroni constant, https://en.wikipedia. org/wiki/Harmonic_number).

