
Written exam number 4, April 29, 2024
Mathematics, SCAN 2nd year, 2023–2024

Duration: 2:00.
No document nor calculation tool allowed.

Exercise 1. Power series (∼5.5 points)
1. Let us consider the differential equation:

xy′′(x) − y(x) = 0 ,

and a power series
+∞∑
n=0

anxn, with a positive radius of convergence R, and let us assume that the function

y : (−R, R) → R, x 7→ y(x), defined as the sum of this power series, is a solution of this differential
equation.

a) Find a recurrence relation satisfied by the coefficients an, and provide the value of a0.
b) For every integer n greater than or equal to 1, express an as a function of n and a1.
c) What is the value of R?

2. Let us consider the function f defined as the sum of the power series
+∞∑
n=1

xn

n!(n − 1)! .

a) What are the values of f(0), f ′(0), and f ′′(0)? derive from these values a rough drawing of the
graph of f over a small neighbourhood of x = 0.

b) Recall the upper bound on the absolute value of the remainder for a numerical series satisfying the
alternating series test, and explain why the quantity −1 + 1

2 − 1
12 = − 7

12 approximates f(−1) up to an
error not exceeding 10−2.

c) Prove that f is increasing (meaning: “strictly” increasing) on [0, +∞).
d) Prove that, for all x in [0, +∞), f(x) is greater than or equal to x. What is the value of lim

x→+∞
f(x)?

Exercise 2. Sequences (∼6 points)
Let us consider the two (odd) functions f and g, from R to R, defined as:

f(x) = −ax + x3 and g(x) = −bx + x3 , for some real quantities a and b satisfying 0 < a < 1 and 1 < b.

The graphs of these two functions, together with the graphs of x 7→ x and x 7→ −x, are shown on
Figures 1a and 1b. The goal of the exercise is to study sequences (un)n∈N and (vn)n∈N defined by the
recurrence relations

un+1 = f(un) and vn+1 = g(vn) ,

depending on the values of the initial conditions u0 and v0. The following facts are admitted (α, β, and γ
are positive quantities, see Figures 1a and 1b):

f(x) = x ⇐⇒ x ∈ {−α, 0, α} and f(x) = −x ⇐⇒ x = 0 ,

and g(x) = x ⇐⇒ x ∈ {−β, 0, β} and g(x) = −x ⇐⇒ x ∈ {−γ, 0, γ} ,

and 1 < f ′(α) and 1 < g′(β) and − 1 < g′(γ) < 0 .

1. Which qualifiers (attractive / repulsive) apply to the fixed points of f and g and why?
2. Describe the behaviour of the sequence (vn)n∈N for v0 = γ. Which qualifier (attractive / repulsive)
would you apply to this sequence and why?
3. In this question, only the drawings and the answers are required, without any further justification.
Warning: the graphs of x 7→ −x are here to help, but should not be directly used for the drawings of scales!

a) Describe the various possible asymptotic behaviours (that is, as n goes to +∞) of the sequence
(un)n∈N, depending on the initial condition u0, and illustrate these behaviours (drawing of “scales”) on
Figure 1a.

b) Same question for the second function/figure: describe the various possible asymptotic behaviours
of the sequence (vn)n∈N, depending on the initial condition v0, and illustrate these behaviours (drawing of
“scales”) on Figure 1b.
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4. Using the fact that f(x) − x is positive for all x in (α, +∞) (no need to prove this fact), provide a
rigorous proof of the asymptotic behaviour of the sequence (un)n∈N when u0 belongs to this interval.
5. Let us assume that u0 is in (−α, α)\{0}, and let us consider the sequence (wn)n∈N defined as wn = |un|.
Using the fact that the function x 7→ |f(x)| is continuous and that, for every n in N, wn+1 = |f(wn)| < wn

(no need to prove these facts), provide a rigorous proof of the asymptotic behaviour of the sequence
(wn)n∈N, and consequently of the sequence (un)n∈N.
6. Let us assume that u0 belongs to (−α, α) \ {0}.

a) Using the Mean Value Theorem, prove that there exists a sequence (zn)n∈N, going to 0 as n goes
to +∞, such that, for every positive integer n,

|un| = |u0| ×
n−1∏
j=0

|f ′(zj)| = |u0| × |f ′(z0)| × · · · × |f ′(zn−1)| .

b) [Bonus] Provide the value of the limit: lim
n→+∞

1
n

ln |un|, and a rough justification of this value.

Exercise 3. Inner products, 1 (∼5 points)
Let us denote by E the space R3[X] and let us consider the function φ : E × E → R, defined as:

φ(P, Q) =
∫ 1

−1
P (t)Q(t) dt.

1. Recall the definition (the required properties and their precise meaning) of an inner product, and prove
that φ is positive definite, and is therefore an inner product on E (the proof of the other properties is
obvious an can be skipped). Let us denote by ∥·∥ the corresponding Euclidean norm.
2. a) Prove the following inequality: for every P in R3[X],

1
2

(∫ 1

−1
P (t) dt

)2

≤
∫ 1

−1
P (t)2 dt .

b) For which polynomials of R3[X] is this inequality actually an equality?

3. Let us consider the set F =
{

P ∈ R3[X] :
∫ 1

−1
(t3 − t)P ′(t) dt = 0

}
.

a) Prove that, for every P in R3[X],

P ∈ F ⇐⇒ P ⊥ 3X2 − 1 .

b) The following facts are admitted: F is a vector subspace of E, and F ⊥ = span(3X2 − 1). Let us
consider the polynomial Q = X + 2X2. Compute the quantity

dist(Q, F ) = inf
P ∈F

∥Q − P∥ .

Exercise 4. Inner products, 2 (∼3.5 points)
Let us denote by E the space C0(

[0, π],R
)

and let us consider the function φ : E × E → R, defined as:

φ(f, g) =
∫ π

0
f(t)g(t) sin(t) dt. The following three facts are admitted:

1. φ is an inner product on E, 2.
∫ π

0
t sin(t) dt = π, 3.

∫ π

0
t2 sin(t) dt = π2 − 4.

Let us consider the functions u1, u2, and u3 of E, defined as:

u1(t) = 1 and u2(t) = t and u3(t) = cos(t) ,

and let F = span(u1, u2) (that is, F is the subspace of affine functions in E).
1. Find an orthogonal basis of F (no need to normalize its vectors).
2. Among the functions of F , find the one which is the closest to u3 (that is, closest to the function cos)
for the Euclidean norm associated with φ.
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Written exam number 4, April 29, 2024 (Figures)

First name: Last name:

(a) Graph of f .

(b) Graph of g.

Figure 1
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Short answers for exercise 1
1. a) For every x in (−R, R)

y′′(x) =
+∞∑
n=2

n(n − 1)anxn−2 ,

so that

xy′′(x) =
+∞∑
n=2

n(n − 1)anxn−1

=
+∞∑
n=1

(n + 1)nan+1xn ,

and so that

xy′′(x) − y(x) = −a0 +
+∞∑
n=1

(
(n + 1)nan+1 − an

)
xn .

Thus, since y(·) is a solution of the differential equation, it follows that the previous power series
is the zero function, which can happen only if all its coefficients are zero. It follows that a0 = 0
and that, for every positive integer n,

(n + 1)nan+1 − an = 0 , or equivalently an+1 = an

(n + 1)n ,

which is the intended recurrence relation.
b) By an immediate induction, it follows from the recurrence relation that, for every positive

integer n,
an = a1

n!(n − 1)! .

c) The value of R is therefore +∞ (ratio test).
2. The first terms of the power series of f read:

f(x) = 0 + x + x2

2 + . . . ,

so that:
f(0) = 0 and f ′(0) = 1 and f ′′(0) = 1 .

For the drawing, see Figure 2.

Figure 2: Graph of x 7→ f(x) close to x = 0.
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a) The quantity f(−1) is the sum of the series
+∞∑
n=1

(−1)n

n!(n − 1)! =
+∞∑
n=1

(−1)nbn, where bn =

(−1)n

n!(n − 1)! . Since |bn| is non-increasing with n and since bn goes to 0 as n goes to +∞, the

alternating series test ensures that, for every positive integer N , if RN denotes the remainder at
rank N of this series, that is:

RN =
+∞∑

n=N+1

(−1)n

n!(n − 1)! ,

then |RN | ≤ bN+1. Besides,

1! × 2! = 2 and 2! × 3! = 2 × 6 = 12 and 3! × 4! = 6 × 24 = 144 ,

so that |R3| ≤ b4 = 1
144 <

1
100 . Thus,

3∑
n=1

(−1)n

n!(n − 1)! = −1 + 1
2 − 1

12 = − 7
12

approximates f(−1) up to an error not exceeding 10−2.
b) For every x in [0, +∞),

f ′(x) =
+∞∑
n=1

xn−1(
(n − 1)!

)2 =
+∞∑
n=0

xn(
n!

)2 = 1 + x + x2

4 + · · · ≥ 1 ,

so that f ′(x) is positive (not smaller than 1), which proves the intended result.
c) Since f(0) = 0 and f ′(x) is not smaller than 1 for all x in [0, +∞), it follows from the

Mean Value Theorem that, for all x in [0, +∞), f(x) is not smaller than x. Other method: for
all x in [0, +∞),

f(x) = x + x2

2 + · · · ≥ x .

It follows that f(x) goes to +∞ as x goes to +∞.

Short answers for exercise 2
1. According to the inequalities given for the derivatives of f and g at their fixed points,

• 0 is an attractive fixed point, and ±α are repulsive fixed points for f (position of the
absolute value of the derivative of f at these fixed points, with respect to 1),

• 0 and ±β are repulsive fixed points for g.

2. Since g(γ) = −γ and g(−γ) = γ, the sequence (vn)n∈N “alternates” between the values
±γ: v2n = γ and v2n+1 = −γ; in other words, it is periodic of period two. Now, |g′(±γ)| < 1,
this sequence can be qualified as “attractive” (it “attracts” nearby solutions, since applying
the transformation g decreases the distances between two points and their images, close to this
periodic sequence).
3. See Figure 3. The sequence (un)n∈N goes to:

• +∞ if α < u0,

• −∞ if u0 < −α,

• 0 if −α < u0 < α.

The sequence (vn)n∈N goes to:

• +∞ if β < v0,

• −∞ if v0 < −β.

If v0 is in (−β, 0) ∪ (0, β), then two cases may occur:
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Figure 3: Behaviour of sequences (un) and (vn), depending on the initial conditions u0 and v0.
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1. either vn equals 0 for some value of n, then the sequence is constant equal to 0 for all indices
larger than n,

2. or the sequence (vn)n gets closer and closer to a period-two sequence that oscillates between
−γ and γ. That is,

• either v2n goes to γ and v2n+1 goes to −γ,
• or v2n goes to −γ and v2n+1 goes to γ.

4. If x is in (α, +∞), then f(x) > x > α so that f(x) is still in this interval. Thus, if u0 is in
this interval, un is in this interval for all n in N, and the sequence un is increasing. Therefore, it
either converges or goes to +∞. If it were convergent, its finite limit ℓ would be a fixed point of
f in (α, +∞) (since f is continuous); since no such fixed point exists, the limit of (un)n is +∞.
5. Since wn+1 < wn, the sequence (wn) is decreasing, and since wn is nonnegative, this sequence
converges towards some limit ℓ in [0, α). Since the function x 7→ |f(x)| is continuous, this limit
must be a fixed point of |f |, thus a solution of f(x) = ±x. According to the information given in
the statement, it follows that ℓ must be equal to 0. Thus (wn)n goes to 0, and as a consequence
the same is true for (un)n.
6. a) Since f(0) = 0, according to the Main Value Theorem, for every n in N, there exists zn

between 0 and un such that

f(un)−f(0) = f ′(zn)(un −0) , or in other words, un+1 = f ′(zn)un , thus |un+1| = |f ′(zn)| |un| ,

thus, by an immediate induction, for every positive integer n,

|un| = |u0| ×
n−1∏
j=0

|f ′(zj)| = |u0| × |f ′(z0)| × · · · × |f ′(zn−1)| ,

and since un goes to 0 as n goes to +∞, the same is true for zn.
b) It follows from the previous inequality that, for every positive integer n,

1
n

ln |un| = 1
n

ln |u0| + 1
n

n−1∑
j=0

ln |f ′(zj)| .

On the right-hand side of this equality, the first term goes to 0 as n goes to +∞, and since zj

goes to 0 as j goes to +∞, the terms in the sum get closer and closer to ln |f ′(0)| = ln(a) < 0.
It follows that the sum divided by n (the mean of the terms in the sum) converges to the same
quantity ln |f ′(0)| (this ).

Short answers for exercise 3
1. For the definition of an inner product (symmetry, bilinearity, positive definiteness), see lecture
notes. Here is a proof of the positive definiteness: for every P in R3[X],

φ(P, P ) =
∫ 1

−1
P (t)2 dt ;

Since P defines a continuous (actually, C∞) function on [−1, 1], if φ(P, P ) equals 0 then P (t)
must vanish on the whole interval [−1, 1], thus P has infinitely many roots and is therefore
(Fundamental Theorem of Linear Algerbra) the zero polynomial.
2. a) According to the Cauchy–Schwarz inequality (applied to the inner product φ and to some
polynomial P and the constant polynomial 1),

φ(P, 1)2 ≤ φ(1, 1)φ(P, P ) , or equivalently
(∫ 1

−1
P (t) dt

)2

≤ 2
∫ 1

−1
P (t)2 dt ,

leading to the intended inequality.
b) According to lecture notes, this inequality is an equality if P and 1 are collinear vectors of

R3[X], that is if P is constant.
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3. a) For every P in R3[X], performing an integration by parts on the integral defining F ,∫ 1

−1
(t3 − t)P ′(t) dt = [(t3 − 1)P (t)]1−1 −

∫ 1

−1
(3t2 − 1)P (t) dt

= −
∫ 1

−1
(3t2 − 1)P (t) dt

= −φ(3X2 − 1, P ) ,

which proves the intended equivalence.
b) If pF ⊥ denotes the orthogonal projection onto F ⊥ in R3[X], then

dist(Q, F ) = ∥pF ⊥(Q)∥ =
∣∣∣∣φ(Q, 3X2 − 1)

∥3X2 − 1∥

∣∣∣∣ =
∣∣φ(Q, 3X2 − 1)

∣∣
∥3X2 − 1∥

=
∣∣φ(Q, 3X2 − 1)

∣∣√
φ(3X2 − 1, 3X2 − 1)

.

By direct calculation,

φ(Q, 3X2 − 1) =
∫ 1

−1
(t + 2t2)(3t2 − 1) dt

=
∫ 1

−1
(6t4 + 3t3 − 2t2 − t) dt

=
[

6
5 t5 + 3

4 t4 − 2
3 t3 − 1

2 t2
]1

−1

= 12
5 − 4

3
= 16

15 ,

and
φ(3X2 − 1, 3X2 − 1) =

∫ 1

−1
(3t2 − 1)(3t2 − 1) dt

=
∫ 1

−1
(9t4 − 6t2 + 1) dt

=
[

9
5 t5 − 6

3 t3 + t

]1

−1

= 18
5 − 4 + 2

= 8
5 .

Thus,

dist(Q, F ) = 16
√

5
15

√
8

= 2
√

8
3
√

5
= 4

√
2

3
√

5
= 4

√
10

15 .

Short answers for exercise 4
1. An orthogonal basis of F is given by vectors v1 = u1 and v2 = u2 + λu1, where

λ = −φ(u2, u1)
φ(u1, u1) = −

∫ π

0 t sin(t) dt∫ π

0 sin(t) dt
= −π

2 ,

so that v2 = u2 − π

2 u1, or equivalently v2(t) = t − π

2 .

2. The vector of F which is the closest to u3 is the orthogonal projection, onto F , of u3, that is:

pF (u3) = φ(u3, v1)
φ(v1, v1) v1 + φ(u3, v2)

φ(v2, v2) v2 .
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Now,
φ(u3, v1) =

∫ π

0
cos(t) sin(t) dt = 1

2 [sin(2t)]π0

= 0 ,

and φ(u3, v2) =
∫ π

0
cos(t)

(
t − π

2

)
sin(t) dt

=
∫ π

0

1
2 sin(2t)

(
t − π

2

)
dt

=
[
−1

2 cos(2t)
(

t − π

2

)]π

0
−

∫ π

0

1
2 sin(2t) dt

= −π

4 − π

4
= −π

2 ,

and φ(v2, v2) =
∫ π

0

(
t − π

2

)2
sin(t) dt

=
∫ π

0

(
t2 − πt + π2

4

)
sin(t) dt

= π2 − 4 − π2 + π2

4 × 2

= π2

2 − 4 ,

so that pF (u3) = φ(u3, v2)
φ(v2, v2) v2

= −π/2
π2/2 − 4

(
t − π

2

)
= − π

π2 − 8

(
t − π

2

)
.
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