MATHEMATICS, SCAN 2ND YEAR, 2023–2024

Duration: 2:00.

No document nor calculation tool allowed.

Exercise 1. Power series (~ 5.5 points)

1. Let us consider the differential equation:

$$xy''(x) - y(x) = 0$$

and a power series $\sum_{n=0}^{+\infty} a_n x^n$, with a positive radius of convergence R, and let us assume that the function $y: (-R, R) \to \mathbb{R}, x \mapsto y(x)$, defined as the sum of this power series, is a solution of this differential equation.

- a) Find a recurrence relation satisfied by the coefficients a_n , and provide the value of a_0 .
- b) For every integer n greater than or equal to 1, express a_n as a function of n and a_1 .
- c) What is the value of R?

2. Let us consider the function f defined as the sum of the power series $\sum_{n=1}^{+\infty} \frac{x^n}{n!(n-1)!}$.

a) What are the values of f(0), f'(0), and f''(0)? derive from these values a rough drawing of the graph of f over a small neighbourhood of x = 0.

b) Recall the upper bound on the absolute value of the remainder for a numerical series satisfying the alternating series test, and explain why the quantity $-1 + \frac{1}{2} - \frac{1}{12} = -\frac{7}{12}$ approximates f(-1) up to an error not exceeding 10^{-2} .

- c) Prove that f is increasing (meaning: "strictly" increasing) on $[0, +\infty)$.
- d) Prove that, for all x in $[0, +\infty)$, f(x) is greater than or equal to x. What is the value of $\lim_{x \to +\infty} f(x)$?

Exercise 2. Sequences (~ 6 points)

Let us consider the two (odd) functions f and g, from \mathbb{R} to \mathbb{R} , defined as:

 $f(x) = -ax + x^3$ and $g(x) = -bx + x^3$, for some real quantities a and b satisfying 0 < a < 1 and 1 < b.

The graphs of these two functions, together with the graphs of $x \mapsto x$ and $x \mapsto -x$, are shown on Figures 1a and 1b. The goal of the exercise is to study sequences $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ defined by the recurrence relations

$$u_{n+1} = f(u_n)$$
 and $v_{n+1} = g(v_n)$,

depending on the values of the initial conditions u_0 and v_0 . The following facts are admitted (α , β , and γ are positive quantities, see Figures 1a and 1b):

$$\begin{aligned} f(x) &= x \iff x \in \{-\alpha, 0, \alpha\} \quad \text{and} \quad f(x) = -x \iff x = 0, \\ \text{and} \quad g(x) &= x \iff x \in \{-\beta, 0, \beta\} \quad \text{and} \quad g(x) = -x \iff x \in \{-\gamma, 0, \gamma\} \\ \text{and} \quad 1 < f'(\alpha) \quad \text{and} \quad 1 < g'(\beta) \quad \text{and} \quad -1 < g'(\gamma) < 0. \end{aligned}$$

1. Which qualifiers (attractive / repulsive) apply to the fixed points of f and g and why?

2. Describe the behaviour of the sequence $(v_n)_{n \in \mathbb{N}}$ for $v_0 = \gamma$. Which qualifier (attractive / repulsive) would *you* apply to this sequence and why?

3. In this question, only the drawings and the answers are required, without any further justification. Warning: the graphs of $x \mapsto -x$ are here to help, but should not be directly used for the drawings of scales!

a) Describe the various possible asymptotic behaviours (that is, as n goes to $+\infty$) of the sequence $(u_n)_{n\in\mathbb{N}}$, depending on the initial condition u_0 , and illustrate these behaviours (drawing of "scales") on Figure 1a.

b) Same question for the second function/figure: describe the various possible asymptotic behaviours of the sequence $(v_n)_{n \in \mathbb{N}}$, depending on the initial condition v_0 , and illustrate these behaviours (drawing of "scales") on Figure 1b.

4. Using the fact that f(x) - x is positive for all x in $(\alpha, +\infty)$ (no need to prove this fact), provide a rigorous proof of the asymptotic behaviour of the sequence $(u_n)_{n \in \mathbb{N}}$ when u_0 belongs to this interval.

5. Let us assume that u_0 is in $(-\alpha, \alpha) \setminus \{0\}$, and let us consider the sequence $(w_n)_{n \in \mathbb{N}}$ defined as $w_n = |u_n|$. Using the fact that the function $x \mapsto |f(x)|$ is continuous and that, for every n in \mathbb{N} , $w_{n+1} = |f(w_n)| < w_n$ (no need to prove these facts), provide a rigorous proof of the asymptotic behaviour of the sequence $(w_n)_{n \in \mathbb{N}}$, and consequently of the sequence $(u_n)_{n \in \mathbb{N}}$.

6. Let us assume that u_0 belongs to $(-\alpha, \alpha) \setminus \{0\}$.

a) Using the Mean Value Theorem, prove that there exists a sequence $(z_n)_{n \in \mathbb{N}}$, going to 0 as n goes to $+\infty$, such that, for every positive integer n,

$$|u_n| = |u_0| \times \prod_{j=0}^{n-1} |f'(z_j)| = |u_0| \times |f'(z_0)| \times \dots \times |f'(z_{n-1})|$$

b) [Bonus] Provide the value of the limit: $\lim_{n \to +\infty} \frac{1}{n} \ln |u_n|$, and a rough justification of this value.

Exercise 3. Inner products, 1 (~ 5 points)

Let us denote by E the space $\mathbb{R}_3[X]$ and let us consider the function $\varphi : E \times E \to \mathbb{R}$, defined as: $\varphi(P,Q) = \int_{-1}^{1} P(t)Q(t) dt.$

1. Recall the definition (the required properties and their precise meaning) of an inner product, and prove that φ is positive definite, and is therefore an inner product on E (the proof of the other properties is obvious an can be skipped). Let us denote by $\|\cdot\|$ the corresponding Euclidean norm.

2. a) Prove the following inequality: for every P in $\mathbb{R}_3[X]$,

$$\frac{1}{2} \left(\int_{-1}^{1} P(t) \, dt \right)^2 \leq \int_{-1}^{1} P(t)^2 \, dt \, dt$$

- b) For which polynomials of $\mathbb{R}_3[X]$ is this inequality actually an equality?
- 3. Let us consider the set $F = \left\{ P \in \mathbb{R}_3[X] : \int_{-1}^1 (t^3 t)P'(t) dt = 0 \right\}.$ a) Prove that, for every P in $\mathbb{R}^3[X]$,

$$P \in F \iff P \perp 3X^2 - 1$$
.

b) The following facts are admitted: F is a vector subspace of E, and $F^{\perp} = \text{span}(3X^2 - 1)$. Let us consider the polynomial $Q = X + 2X^2$. Compute the quantity

$$\operatorname{dist}(Q, F) = \inf_{P \in F} \|Q - P\| .$$

Exercise 4. Inner products, 2 (~ 3.5 points)

Let us denote by E the space $\mathcal{C}^0([0,\pi],\mathbb{R})$ and let us consider the function $\varphi: E \times E \to \mathbb{R}$, defined as: $\varphi(f,g) = \int_0^{\pi} f(t)g(t)\sin(t) dt$. The following three facts are admitted:

1.
$$\varphi$$
 is an inner product on E , 2. $\int_0^{\pi} t \sin(t) dt = \pi$, 3. $\int_0^{\pi} t^2 \sin(t) dt = \pi^2 - 4$.

Let us consider the functions u_1 , u_2 , and u_3 of E, defined as:

$$u_1(t) = 1$$
 and $u_2(t) = t$ and $u_3(t) = \cos(t)$,

and let $F = \text{span}(u_1, u_2)$ (that is, F is the subspace of affine functions in E).

1. Find an *orthogonal* basis of F (no need to normalize its vectors).

2. Among the functions of F, find the one which is the closest to u_3 (that is, closest to the function cos) for the Euclidean norm associated with φ .

WRITTEN EXAM NUMBER 4, APRIL 29, 2024 (FIGURES)

Short answers for exercise 1

1. a) For every x in (-R, R)

$$y''(x) = \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-2} ,$$

so that

$$xy''(x) = \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-1}$$
$$= \sum_{n=1}^{+\infty} (n+1)na_{n+1}x^n,$$

and so that

$$xy''(x) - y(x) = -a_0 + \sum_{n=1}^{+\infty} ((n+1)na_{n+1} - a_n)x^n.$$

Thus, since $y(\cdot)$ is a solution of the differential equation, it follows that the previous power series is the zero function, which can happen only if all its coefficients are zero. It follows that $a_0 = 0$ and that, for every positive integer n,

$$(n+1)na_{n+1} - a_n = 0$$
, or equivalently $a_{n+1} = \frac{a_n}{(n+1)n}$,

which is the intended recurrence relation.

b) By an immediate induction, it follows from the recurrence relation that, for every positive integer n,

$$a_n = \frac{a_1}{n!(n-1)!} \,.$$

- c) The value of R is therefore $+\infty$ (ratio test).
- 2. The first terms of the power series of f read:

$$f(x) = 0 + x + \frac{x^2}{2} + \dots,$$

so that:

$$f(0) = 0$$
 and $f'(0) = 1$ and $f''(0) = 1$.

For the drawing, see Figure 2.

Figure 2: Graph of $x \mapsto f(x)$ close to x = 0.

a) The quantity f(-1) is the sum of the series $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n!(n-1)!} = \sum_{n=1}^{+\infty} (-1)^n b_n$, where $b_n = (-1)^n$.

 $\frac{(-1)}{n!(n-1)!}$. Since $|b_n|$ is non-increasing with n and since b_n goes to 0 as n goes to $+\infty$, the alternating series test ensures that, for every positive integer N, if R_N denotes the remainder at rank N of this series, that is:

$$R_N = \sum_{n=N+1}^{+\infty} \frac{(-1)^n}{n!(n-1)!},$$

then $|R_N| \leq b_{N+1}$. Besides,

 $1! \times 2! = 2$ and $2! \times 3! = 2 \times 6 = 12$ and $3! \times 4! = 6 \times 24 = 144$,

so that $|R_3| \le b_4 = \frac{1}{144} < \frac{1}{100}$. Thus,

$$\sum_{n=1}^{3} \frac{(-1)^n}{n!(n-1)!} = -1 + \frac{1}{2} - \frac{1}{12} = -\frac{7}{12}$$

approximates f(-1) up to an error not exceeding 10^{-2} .

b) For every x in $[0, +\infty)$,

$$f'(x) = \sum_{n=1}^{+\infty} \frac{x^{n-1}}{\left((n-1)!\right)^2} = \sum_{n=0}^{+\infty} \frac{x^n}{\left(n!\right)^2} = 1 + x + \frac{x^2}{4} + \dots \ge 1,$$

so that f'(x) is positive (not smaller than 1), which proves the intended result.

c) Since f(0) = 0 and f'(x) is not smaller than 1 for all x in $[0, +\infty)$, it follows from the Mean Value Theorem that, for all x in $[0, +\infty)$, f(x) is not smaller than x. Other method: for all x in $[0, +\infty)$,

$$f(x) = x + \frac{x^2}{2} + \dots \ge x$$

It follows that f(x) goes to $+\infty$ as x goes to $+\infty$.

Short answers for exercise 2

1. According to the inequalities given for the derivatives of f and g at their fixed points,

- 0 is an attractive fixed point, and $\pm \alpha$ are repulsive fixed points for f (position of the absolute value of the derivative of f at these fixed points, with respect to 1),
- 0 and $\pm\beta$ are repulsive fixed points for g.

2. Since $g(\gamma) = -\gamma$ and $g(-\gamma) = \gamma$, the sequence $(v_n)_{n \in \mathbb{N}}$ "alternates" between the values $\pm \gamma$: $v_{2n} = \gamma$ and $v_{2n+1} = -\gamma$; in other words, it is periodic of period two. Now, $|g'(\pm \gamma)| < 1$, this sequence can be qualified as "attractive" (it "attracts" nearby solutions, since applying the transformation g decreases the distances between two points and their images, close to this periodic sequence).

- 3. See Figure 3. The sequence $(u_n)_{n \in \mathbb{N}}$ goes to:
 - $+\infty$ if $\alpha < u_0$,
 - $-\infty$ if $u_0 < -\alpha$,
 - 0 if $-\alpha < u_0 < \alpha$.

The sequence $(v_n)_{n \in \mathbb{N}}$ goes to:

- $+\infty$ if $\beta < v_0$,
- $-\infty$ if $v_0 < -\beta$.

If v_0 is in $(-\beta, 0) \cup (0, \beta)$, then two cases may occur:

Figure 3: Behaviour of sequences (u_n) and (v_n) , depending on the initial conditions u_0 and v_0 .

- 1. either v_n equals 0 for some value of n, then the sequence is constant equal to 0 for all indices larger than n,
- 2. or the sequence $(v_n)_n$ gets closer and closer to a period-two sequence that oscillates between $-\gamma$ and γ . That is,
 - either v_{2n} goes to γ and v_{2n+1} goes to $-\gamma$,
 - or v_{2n} goes to $-\gamma$ and v_{2n+1} goes to γ .

4. If x is in $(\alpha, +\infty)$, then $f(x) > x > \alpha$ so that f(x) is still in this interval. Thus, if u_0 is in this interval for all n in N, and the sequence u_n is increasing. Therefore, it either converges or goes to $+\infty$. If it were convergent, its finite limit ℓ would be a fixed point of f in $(\alpha, +\infty)$ (since f is continuous); since no such fixed point exists, the limit of $(u_n)_n$ is $+\infty$. 5. Since $w_{n+1} < w_n$, the sequence (w_n) is decreasing, and since w_n is nonnegative, this sequence converges towards some limit ℓ in $[0, \alpha)$. Since the function $x \mapsto |f(x)|$ is continuous, this limit must be a fixed point of $f(x) = \pm x$. According to the information given in the statement, it follows that ℓ must be equal to 0. Thus $(w_n)_n$ goes to 0, and as a consequence the same is true for $(u_n)_n$.

6. a) Since f(0) = 0, according to the Main Value Theorem, for every n in \mathbb{N} , there exists z_n between 0 and u_n such that

$$f(u_n) - f(0) = f'(z_n)(u_n - 0)$$
, or in other words, $u_{n+1} = f'(z_n)u_n$, thus $|u_{n+1}| = |f'(z_n)| |u_n|$,

thus, by an immediate induction, for every positive integer n,

$$|u_n| = |u_0| \times \prod_{j=0}^{n-1} |f'(z_j)| = |u_0| \times |f'(z_0)| \times \dots \times |f'(z_{n-1})| ,$$

and since u_n goes to 0 as n goes to $+\infty$, the same is true for z_n .

b) It follows from the previous inequality that, for every positive integer n,

$$\frac{1}{n}\ln|u_n| = \frac{1}{n}\ln|u_0| + \frac{1}{n}\sum_{j=0}^{n-1}\ln|f'(z_j)| .$$

On the right-hand side of this equality, the first term goes to 0 as n goes to $+\infty$, and since z_j goes to 0 as j goes to $+\infty$, the terms in the sum get closer and closer to $\ln |f'(0)| = \ln(a) < 0$. It follows that the sum divided by n (the mean of the terms in the sum) converges to the same quantity $\ln |f'(0)|$ (this).

Short answers for exercise 3

1. For the definition of an inner product (symmetry, bilinearity, positive definiteness), see lecture notes. Here is a proof of the positive definiteness: for every P in $\mathbb{R}_3[X]$,

$$\varphi(P,P) = \int_{-1}^1 P(t)^2 dt;$$

Since P defines a continuous (actually, \mathcal{C}^{∞}) function on [-1, 1], if $\varphi(P, P)$ equals 0 then P(t) must vanish on the whole interval [-1, 1], thus P has infinitely many roots and is therefore (Fundamental Theorem of Linear Algerbra) the zero polynomial.

2. a) According to the Cauchy–Schwarz inequality (applied to the inner product φ and to some polynomial P and the constant polynomial 1),

$$\varphi(P,1)^2 \le \varphi(1,1)\varphi(P,P)$$
, or equivalently $\left(\int_{-1}^1 P(t)\,dt\right)^2 \le 2\int_{-1}^1 P(t)^2\,dt$

leading to the intended inequality.

b) According to lecture notes, this inequality is an equality if P and 1 are collinear vectors of $\mathbb{R}_3[X]$, that is if P is constant.

3. a) For every P in $\mathbb{R}_3[X]$, performing an integration by parts on the integral defining F,

$$\int_{-1}^{1} (t^3 - t)P'(t) dt = [(t^3 - 1)P(t)]_{-1}^{1} - \int_{-1}^{1} (3t^2 - 1)P(t) dt$$
$$= -\int_{-1}^{1} (3t^2 - 1)P(t) dt$$
$$= -\varphi(3X^2 - 1, P),$$

which proves the intended equivalence.

b) If $p_{F^{\perp}}$ denotes the orthogonal projection onto F^{\perp} in $\mathbb{R}_3[X]$, then

$$\operatorname{dist}(Q,F) = \|p_{F^{\perp}}(Q)\| = \left|\frac{\varphi(Q,3X^2-1)}{\|3X^2-1\|}\right| = \frac{\left|\varphi(Q,3X^2-1)\right|}{\|3X^2-1\|} = \frac{\left|\varphi(Q,3X^2-1)\right|}{\sqrt{\varphi(3X^2-1,3X^2-1)}}$$

By direct calculation,

$$\begin{split} \varphi(Q, 3X^2 - 1) &= \int_{-1}^{1} (t + 2t^2)(3t^2 - 1) \, dt \\ &= \int_{-1}^{1} (6t^4 + 3t^3 - 2t^2 - t) \, dt \\ &= \left[\frac{6}{5}t^5 + \frac{3}{4}t^4 - \frac{2}{3}t^3 - \frac{1}{2}t^2 \right]_{-1}^{1} \\ &= \frac{12}{5} - \frac{4}{3} \\ &= \frac{16}{15} \,, \end{split}$$

and

$$\begin{aligned} \varphi(3X^2 - 1, 3X^2 - 1) &= \int_{-1}^{1} (3t^2 - 1)(3t^2 - 1) \, dt \\ &= \int_{-1}^{1} (9t^4 - 6t^2 + 1) \, dt \\ &= \left[\frac{9}{5}t^5 - \frac{6}{3}t^3 + t\right]_{-1}^{1} \\ &= \frac{18}{5} - 4 + 2 \\ &= \frac{8}{5}. \end{aligned}$$

Thus,

$$\operatorname{dist}(Q, F) = \frac{16\sqrt{5}}{15\sqrt{8}} = \frac{2\sqrt{8}}{3\sqrt{5}} = \frac{4\sqrt{2}}{3\sqrt{5}} = \frac{4\sqrt{10}}{15}$$

Short answers for exercise 4

1. An orthogonal basis of F is given by vectors $v_1 = u_1$ and $v_2 = u_2 + \lambda u_1$, where

$$\lambda = -\frac{\varphi(u_2, u_1)}{\varphi(u_1, u_1)} = -\frac{\int_0^\pi t \sin(t) \, dt}{\int_0^\pi \sin(t) \, dt} = -\frac{\pi}{2}$$

so that $v_2 = u_2 - \frac{\pi}{2}u_1$, or equivalently $v_2(t) = t - \frac{\pi}{2}$. 2. The vector of F which is the closest to u_3 is the orthogonal projection, onto F, of u_3 , that is:

$$p_F(u_3) = \frac{\varphi(u_3, v_1)}{\varphi(v_1, v_1)} v_1 + \frac{\varphi(u_3, v_2)}{\varphi(v_2, v_2)} v_2$$

Now,

$$\begin{split} \varphi(u_3, v_1) &= \int_0^{\pi} \cos(t) \sin(t) \, dt = \frac{1}{2} \left[\sin(2t) \right]_0^{\pi} \\ &= 0, \\ \text{and} \quad \varphi(u_3, v_2) &= \int_0^{\pi} \cos(t) \left(t - \frac{\pi}{2} \right) \sin(t) \, dt \\ &= \int_0^{\pi} \frac{1}{2} \sin(2t) \left(t - \frac{\pi}{2} \right) dt \\ &= \left[-\frac{1}{2} \cos(2t) \left(t - \frac{\pi}{2} \right) \right]_0^{\pi} - \int_0^{\pi} \frac{1}{2} \sin(2t) \, dt \\ &= -\frac{\pi}{4} - \frac{\pi}{4} \\ &= -\frac{\pi}{2}, \\ \text{and} \quad \varphi(v_2, v_2) &= \int_0^{\pi} \left(t - \frac{\pi}{2} \right)^2 \sin(t) \, dt \\ &= \int_0^{\pi} \left(t^2 - \pi t + \frac{\pi^2}{4} \right) \sin(t) \, dt \\ &= \pi^2 - 4 - \pi^2 + \frac{\pi^2}{4} \times 2 \\ &= \frac{\pi^2}{2} - 4, \\ \text{so that} \quad p_F(u_3) &= \frac{\varphi(u_3, v_2)}{\varphi(v_2, v_2)} v_2 \\ &= -\frac{\pi/2}{\pi^2/2 - 4} \left(t - \frac{\pi}{2} \right) \\ &= -\frac{\pi}{\pi^2 - 8} \left(t - \frac{\pi}{2} \right). \end{split}$$