## Mechanics - Test 3

Personal formula sheet authorised (4 pages +1 page on usual links + one page on matrices of inertia) - Non programmable calculators are authorised
pencaur
The system under consideration is a sander used by professionals which is equipped with a balancing ring to reduce vibrations. The objective of the study is to help design this balancing ring and establish a dynamic model in order to study vibrations (Figure 1).


Figure 1 - Representation and technical drawing of the sander.

## 1. Design of the balancing ring

The balancing ring used to eliminate vibrations is tightly mounted on the rotor of the sander motor. The corresponding model is shown in Figure 2 which comprises :

- A homogeneous "disc" (cylinder of revolution of centre $O_{1}$ ) with two identical holes denoted $t_{1}$ and $t_{2}$. The mass of this disc with the two holes is $M_{t}$, its radius is $R$ and its thickness is $h$. The axis of the disc $\left(O_{1}, \vec{x}_{1}\right)$.
- the two identical holes $t_{1}$ and $t_{2}$ are cylindrical of radius $r_{t}$ and axes $\left(O_{t 1}, \vec{x}_{1}\right)$ and $\left(O_{t 2}, \vec{x}_{2}\right)$ respectively. The centres $O_{t 1}$ and $O_{t 2}$ of the two holes are located at a distance $\ell$ from $O_{1}$, centre of the disc, and shifted apart from axis $\left(O_{1}, \vec{z}_{1}\right)$ by an angle $\left.\alpha \in\right] 0, \pi / 2[$
- An eccentric (homogeneous circular cylinder) made of the same material as the disc. Its mass is $M_{e}$, his radius $r_{e}$ and its length $h_{e}$. Its axis $\left(O_{1^{*}}, \vec{x}_{1}\right)$ is at distance $e$ along $\left(O_{1}, \vec{z}_{1}\right)$ from the disc axis $\left(O_{1}, \vec{x}_{1}\right)$. The centre of the eccentric is denoted $O_{e}$.


Figure 2 - Balancing ring.

## Questions:

1.1. Considering two identical homogeneous solids ST1 and ST2 of mass $m_{t}$ made of the same material as the disc and filling exactly the 2 holes $t_{1}$ and $t_{2}$, determine $M_{t}$ and $m_{t}$ in terms of $R, r_{t}$ and $M$, the mass of the disc with NO holes.
1.2. Determine the position of the centre of inertia of the system (disc + holes +eccentric) in the coordinate system $\left(O_{1}, \vec{x}_{1}, \vec{y}_{1}, \vec{z}_{1}\right)$ in terms of the masses $M_{t}, M_{e}, m_{t}$ and parameters $h, h_{e}, e, \ell$ and $\alpha$.
1.3. What is the relationship between $\ell$ and $\alpha$ so that static balancing with respect to the axis of rotation $\left(O_{1}, \vec{x}_{1}\right)$ is achieved?
1.4. Give without any calculations the matrices of inertia of the two solids ST1 and ST2 at their centres $O_{t 1}$ and $O_{t 2}$ respectively in terms of $m_{t}, r_{t}$ and $h$. For the rest of the problem, the elements of these matrices will be denoted $A_{t}, B_{t}, \ldots$ using Binet's notations.
1.5. Express the two matrices at point $O_{1}$ using the previous notations and $m_{t}, \ell$ and $\alpha$.
1.6. Deduce the matrix of inertia of the disc with the two holes at point $O_{1}$ in terms of the parameters used in 1-5 and $M, R$ and $h$.
1.7. Give and justify the a-priori form of the matrix of inertia of the whole system (disk +2 holes +eccentric) at point $O_{1}$ without calculating its elements.
1.8. Is dynamic balancing of the assembly with respect to its axis of rotation $\left(O_{1}, \vec{x}_{1}\right)$ achieved? Justify.

## 2 - Vibration analysis

## Model description:

The kinematic model shown in Figure 3 comprises:

- ground $S_{0}$ with the coordinate system $\left(O, \vec{x}_{0}, \vec{y}_{0}, \vec{z}_{0}\right)$ corresponding to the sander casing held by the operator and considered here as fixed.
- the driving shaft with the eccentric $S_{1}$ connected to the ground by a revolute joint of axis
$\left(O, \vec{x}_{1,0}\right)$ and parameter $\psi_{1}=\left(\vec{z}_{0}, \vec{z}_{1}\right)$
- the operating part of the sander $S_{2}$ connected to the ground by a cylindrical joint of axis $\left(O, \vec{z}_{2,0}\right)$ and parameters $\psi_{2}=\left(\vec{x}_{0}, \vec{x}_{2}\right)$ and $z=\overrightarrow{O P} \cdot \vec{z}_{0.2}$

The link with no parameter between $S_{1}$ and $S_{2}$ is simulated as a permanent point contact at $A_{1}$ attached to $S_{1}$ so that $A_{1}$ is permanently lying in the plane $\left(O, \vec{x}_{2}, \vec{z}_{0,2}\right)$ fixed to $S_{2}$. One gives $\overrightarrow{O A}_{1}=-L \vec{x}_{0,1}-e \vec{z}_{1}$.

## Mass geometry:

$S_{1}:$ mass $M_{1}$, its centre of inertia is on the $\left(O, \vec{x}_{1,0}\right)$ axis, matrix of inertia at point $O$ :
$[I]_{O, S_{1}}=\left[\begin{array}{ccc}A_{1} & 0 & -E_{1} \\ 0 & B_{1} & 0 \\ -E_{1} & 0 & C_{1}\end{array}\right]_{R_{1}}$
$S_{2}:$ mass $M_{2}$, its centre of inertia $G_{2}$ is defined by $\overrightarrow{P G_{2}}=-a \vec{x}_{2}+b \vec{z}_{0,2}$, matrix of inertia at
point $G_{2}:[I]_{\mathrm{G}_{2}, s_{2}}=\left[\begin{array}{ccc}A_{2} & 0 & -E_{2} \\ 0 & B_{2} & 0 \\ -E_{2} & 0 & C_{2}\end{array}\right]_{R_{2}}$

## Hypotheses:

$\mathrm{H} 1:\left(O, \vec{x}_{0}, \vec{y}_{0}, \vec{z}_{0}\right)$ is considered as Galilean (Newtonian)
H2: All the joints/links are supposed to be perfect.
H3: $\vec{z}_{0}$ is the upward vertical axis
H4: a massless linear spring of stiffness $k$ and length at rest $\ell_{0}$ is mounted between point $O$ of $S_{0}$ and point $P$ of $S_{2}$ (this spring simulates the elasticity of the joint $S_{0} / S_{2}$ and sander head).
H5: The sander head is supposed to be in contact with a planar horizontal surface (P fixed to $S_{2}$ lies on this plane). Consequently and by account on symmetry, the friction forces cancel two by two but generate a pitching torque so that the contact force wrench reduces to:

$$
\left\{F_{0,2}\right\}\left\{\begin{array}{c}
\vec{R}_{0 / 2}=Z_{02} \vec{z}_{0,2} \\
\vec{M}_{0 / 2}(P)=N_{02} \vec{z}_{0,2}
\end{array}\right.
$$

where $Z_{02}$ is supposed to be known (imposed by the operator) and $N_{02}$ is unknown, the pitching parameter $f_{p}$ is given.
H6: an electric motor delivers a known driving torque $C_{m / 1} \vec{x}_{0,1}$ on the shaft of $S_{1}$.


Figure 3 - Model of sander (with spring)

## Questions:

2-1 Develop the constraint equation associated with the condition that point $A_{1}$ always lies in the plane $\left(O, \vec{x}_{2}, \vec{z}_{0,2}\right)$. Show that it leads to the equation $\tan \psi_{2}=-\frac{e}{\ell} \sin \psi_{1}$.
2-2 Give the a-priori form of contact force wrench for link $S_{2} / S_{1}$ (expressed in $\left(R_{2}\right)$ ).
2-3 Give the wrench (sum and moment) of the actions exerted by the spring on $S_{2}$.
2-4 Calculate the Galilean kinetic wrench (sum and moment) of $S_{1}$ at point $O$.
2-5 Calculate the Galilean kinetic wrench (sum and moment) of $S_{2}$ at point $O$.
2-6 Calculate the Galilean dynamic wrench (sum and moment) of $S_{1}$ at point $O$.
2-7 Based on the previous calculations, what is the best strategy to calculate the Galilean dynamic moment of $S_{2}$ at point $O$ (Please, do not develop the calculations, just give the methodology!)? Justify.
2-8 Give a complete analysis of the system (unknowns/equations).
2-9 Deduce the minimum system equations.
2-10 Develop the dynamic moment equation applied to $S_{1}$ at point $O$ projected in the $\vec{x}_{0,1}$ direction.
2-11 Is this equation an equation of motion? Please justify.
2-12 Develop the law of Coulomb at the interface between the sander head and the surface.

