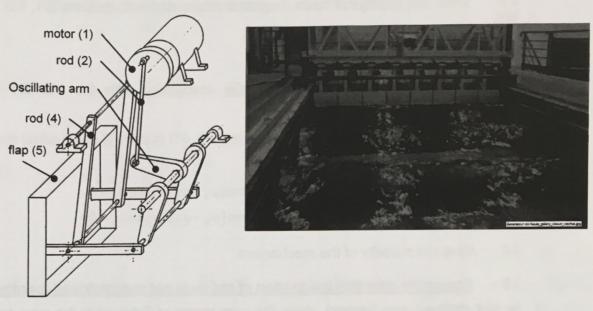


SWELL SIMULATOR (the return!)



Schematics of the swell simulator

Photo of an actual swell simulator

The planar model of swell simulator is shown in Figure 1 and comprises:

- A disc S₁, attached to the motor axle and connected to the ground S₀ by a revolute joint of axis (O, \vec{y})

Parameter for motion 1/0:

 $\psi_1 = (\vec{x}_0, \vec{x}_1) = (\vec{z}_0, \vec{z}_1)$

- A rod S₂ connected to disc S₁ by a revolute joint of axis (A, \vec{y})

Parameter for motion 2/1:

 $\psi_2 = (\vec{x}_1, \vec{x}_2) = (\vec{z}_1, \vec{z}_2)$

An oscillating arm S₃ connected to the ground S₀ by a revolute joint of axis (C, \vec{y}) Parameter for motion 3/0: $\psi_3 = (\vec{x}_0, \vec{x}_3) = (\vec{z}_0, \vec{z}_3)$

A rod S₄ connected to the ground S₀ by a revolute joint of axis (F, \vec{y})

Parameter for motion 4/0 : $\psi_4 = (\vec{x}_0, \vec{x}_4) = (\vec{z}_0, \vec{z}_4)$

- A flap S₅ connected to the oscillating arm S₃ by a revolute joint of axis (D, \vec{y})

Parameter for motion 5/3:

 $\psi_5 = (\vec{x}_3, \vec{x}_5) = (\vec{z}_3, \vec{z}_5)$

Moreover:

- rod S₂ is connected to the oscillating arm S₃ by a revolute joint of axis (B, \vec{y}) (no parameter)
- rod S₄ is connected to flap S₅ by a revolute joint of axis (E, \vec{y}) (no parameter).

Part I: Frame definition / parameters - Constraint equations - Mobility

- I.1 Draw the change of basis diagrams associated with motions 2/1, 5/3, 2/0 and 5/0.
 - I.2 Draw the graph of links.
 - **I.3 -** Develop the constraint equation(s) associated with the link 2/3 with no parameter at point B.

The constraint equations associated with the link 4/5 at point E read (admit the result):

$$x_F - x_C - \ell_4 \sin \psi_4 - a \cos(\psi_5 + \psi_3) + c \sin \psi_3 = 0$$

$$z_F - z_C - \ell_4 \cos \psi_4 + a \sin(\psi_5 + \psi_3) + c \cos \psi_3 = 0$$

- I.4 Give the mobility of the mechanism
- I.5 Assuming now that the motion of rod S₄ is not parametrized (parameter ψ_4 is not defined any longer), draw the new graph of links, give the new constraint equation (vector form without developing the analytical expressions) and derive the system mobility.

Partie II: Kinematics

- II.1 Specify the nature of motion 1/0 and give the vector coordinates of its kinematic screw at point A (<u>results expressed in the coordinate system 1</u>)
- II.2 Calculate the acceleration vector $\vec{A}^0(A)$ (results expressed in the coordinate system 1)
- II.3 Knowing that $\vec{V}^0(D) = -c \dot{\psi}_3 \vec{x}_3$, calculate $\vec{V}^0(N)$ et $\vec{A}^0(N)$
- **II.4** The dimensions of the mechanism are chosen so that $\psi_3 + \psi_5 \approx 0$ and ψ_3 is a small angle $(\cos \psi_3 \approx 1, \sin \psi_3 \approx \psi_3)$. In these conditions, give the expression of $\vec{V}^0(N)$ (results expressed in the coordinate system 0)
- **II.5** If, in addition, $\psi_3\psi_3 << \psi_3$, specify the nature of motion 5/0 and explain why such a condition is interesting with regard to the system operation.

