

Mechanics – Test# 4 08/04/2019 – 1h30 (10h15 – 11h45)

Authorised documents:

- Personal Formula sheet (3 pages + 1 joint wrench + 1 inertia matrices)

- Non programmable Calculator

Analysis of a Swiss anchor escapement mechanism

System description

The Swiss anchor escapement mechanism (**Figure 1**) is a key component in many mechanical watches as it controls watch accuracy to a large extent.

This mechanism shown in **Figure 2** is operated by the energy stored in a torsion spring R_T of stiffness k (not represented in figure 2) which makes solid S_1 oscillate periodically by an angle $\pm \alpha$ around axis (O_1, \vec{z}_0) at a frequency of a couple of Hz. Solid S_1 comprises a large disc S_A , a small disc S_B and an impact jewel S_C (**Figure 3**). It is linked to the watch frame S_0 by a revolute joint of axis $(O_1, \vec{z}_{0,12})$ and parameter $\alpha = (\vec{x}_0, \vec{x}_1) = (\vec{y}_0, \vec{y}_1)$;

The $\pm \alpha$ oscillations of S_1 induce a periodic push of the anchor S_2 by an angle $\pm \beta$ because of the point contact at A between the impact jewel S_c and S_2 . The mechanical actions transmitted by the point contact joint between S_1 (via S_c) and S_2 at point A are expressed by the wrench $\{F_{2\rightarrow 1}\}$.

The anchor S_2 is linked to the watch frame S_0 by a revolute joint of axis (O_2, \vec{z}_0) and parameter

$\beta = (\vec{x}_0, \vec{x}_2) = (\vec{y}_0, \vec{y}_2).$

The periodic oscillation of anchor S_2 permits releasing the rotation of the escapement wheel R_E (not modeled) which is in contact with S_2 at point D. The contact forces at point D are known and

expressed by the wrench $\{F_{B\to 2}\}$.

Hypotheses:

- the frame $R_0 = (O_1, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ is a Galilean frame,
- the problem is considered as planar,
- the gravity is downwards along $\vec{z}_{0,1,2}$,
- all the joints are perfect,
- the torsion spring R_T acts onto S_1 at point O_1 . It has a constant stiffness k and its angle at

rest is α_0 . Its mass is neglected and its force wrench is denoted $\left\{ F_{R_T \to 1} \right\}_{r \to 1}$.

- The contact force wrench between S_1 and S_2 at point A reads:

$$\left\{F_{2\to1}\right\}_{A} = \left\{\begin{array}{c} \vec{R}_{2\to1} = X_{21}\vec{x}_{1} + Y_{21}\vec{y}_{1} \\ \vec{M}_{2\to1}(A) = \vec{0} \end{array}\right\}$$

All the geometrical parameters are defined in figure 2.

Part 1 : Mass Geometry

Solid S_1 of mass m_1 can be decomposed into 3 homogeneous solids, S_A , S_B and S_C :

- solid S_A is a cylinder of height h_{A_A} radius R_A and axis $(O_1, \vec{z}_{0,1,2})$. Its mass is m_A .
- solid S_B is a cylinder of height *h*, radius *r* and axis $(O_1, \vec{z}_{0,12})$. Its mass is m_B .
- solid S_c is a half-cylinder of height *h*, radius *r* and axis $(C, \vec{z}_{0,1,2})$. Its mass is m_c . The

coordinates of the mass center G_c of solid S_c are given by : $\overrightarrow{O_1 G_c} = (+L_c - \frac{4R}{3\pi}) \vec{y}_1 + \frac{h}{2} \vec{z}_1$.

Solid S₂ has negligible thickness, its mass center is G_2 $(\overline{O_2 G_2} = x_{G_2} \overline{x_2})$, its mass is m_2 .

Do not calculate the masses of the solids.

The inertia matrices of S_1 , S_2 and S_c are given as:

$$= \begin{bmatrix} A_1 & 0 & 0 \\ 0 & B_1 & -D_1 \\ 0 & -D_1 & C_1 \end{bmatrix}_{R_1} = \begin{bmatrix} A_2 & -F_2 & 0 \\ -F_2 & B_2 & 0 \\ 0 & 0 & C_2 \end{bmatrix}_{R_2} = \begin{bmatrix} A_{\infty} & 0 & 0 \\ 0 & B_{\infty} & 0 \\ 0 & 0 & C_{\infty} \end{bmatrix}_{R_2}$$

- **1.1** Justify the inertia matrix form of solid S_2 at point G_2 expressed in basis R_2 .
- **1.2** Justify the inertia matrix form of solid S_1 at point O_1 expressed in basis R_1 .
- **1.3** Determine the coordinates of the mass center G_1 of solid S_1 in R_1 , express O_1G_1 . For the next questions, these coordinates will be denoted: $\overline{O_1G_1} = x_{G_1}\vec{x}_1 + x_{G_1}\vec{y}_1 + x_{G_1}\vec{z}_1$

Study of solid $S_1 = \{S_A \cup S_B \cup S_C\}$:

- **1.4** Determine the inertia matrix of the small disc S_B at O_1 . Detail the expression of the matrix terms.

For the next questions, one will use Binet's notations for the matrix terms: Asa, Bsa, Csa, Dsa, Esa, Fsa

1.6 Determine the inertia matrix of the impact jewel S_c at O_1 . Use the terms of \overline{I}_{G_c,S_c} .

1.7 Determine the inertia matrix of S_1 at O_1 . Detail the expression of the matrix terms. For the next questions, one will use Binet's notations for the matrix terms: A_1 , B_1 , C_1 , D_1 , E_1 , F_1

Part 2 : Kinetics and dynamics

The kinematic scheme of the Swiss escapement anchor mechanism is represented in Figure 2. It is composed of:

- the watch frame S_0 (watch housing), $R_0 = (O_1, \vec{x}_0, \vec{y}_0, \vec{z}_0)$,
- solid $S_1(\text{mass m}_1)$ linked to S_0 by a revolute joint of axis $(O_1, \vec{z}_{0,1,2})$ and parameter
 - $\alpha = (\vec{x}_0, \vec{x}_1) = (\vec{y}_0, \vec{y}_1),$
- solid S_2 linked to S_0 by a revolute joint of axis $(O_2, \vec{z}_{0,1,2})$ and parameter $\beta = (\vec{x}_0, \vec{x}_2) = (\vec{y}_0, \vec{y}_2)$,
- a torsion spring R_T (not represented in Figure 2), of stiffness k, acting on S_1 .

2.1 Graph of links, change of basis diagrams.

- **2.2** Give the wrench associated with the torsion spring R_T mechanical actions onto solid S_1 at point O_1 expressed in the coordinate system R_1 .
- **2.3** Determine the kinetic wrench (momentum wrench) of solid S_1 at point θ_1 in its motion with respect to R_0 .
 - **2.4** Determine the dynamic wrench of solid S_1 at point θ_1 in its motion with respect to R_0 .
 - **2.5** Write the dynamic sum theorem for solid *S*₁.
 - **2.6** Write the dynamic moment theorem applied to solid S_1 at O_1
 - **2.7** Determine the dynamic wrench of solid S_2 at point θ_2 in its motion with respect to R_0 .

Figure 3 : Solid $S_1 = \{S_A \cup S_B \cup S_C\}$

4