> Mechanics - Test\# 4
> $08 / 04 / 2019-1$ h30 $(10 \mathrm{~h} 15-11 \mathrm{~h} 45)$

Authorised documents:

- Personal Formula sheet (3 pages +1 joint wrench +1 inertia matrices)
- Non programmable Calculator

Analysis of a Swiss anchor escapement mechanism

Figure 1 - Swiss anchor escapement mechanism of a watch

System description

The Swiss anchor escapement mechanism (Figure 1) is a key component in many mechanical watches as it controls watch accuracy to a large extent.
This mechanism shown in Figure 2 is operated by the energy stored in a torsion spring R_{T} of stiffness k (not represented in figure2) which makes solid S_{1} oscillate periodically by an angle $\pm \alpha$ around axis $\left(O_{1}, \vec{z}_{0}\right)$ at a frequency of a couple of Hz . Solid S_{1} comprises a large disc $S_{A_{1}}$ a small disc S_{B} and an impact jewel S_{C} (Figure 3). It is linked to the watch frame S_{0} by a revolute joint of axis $\left(O_{1}, \vec{z}_{0,1,2}\right)$ and parameter $\alpha=\left(\vec{x}_{0}, \vec{x}_{1}\right)=\left(\vec{y}_{0}, \vec{y}_{1}\right)$;
The $\pm \alpha$ oscillations of S_{1} induce a periodic push of the anchor S_{2} by an angle $\pm \beta$ because of the point contact at A between the impact jewel S_{C} and S_{2}. The mechanical actions transmitted by the point contact joint between $S_{1}\left(\right.$ via $\left.S_{c}\right)$ and S_{2} at point A are expressed by the wrench $\left\{F_{2 \rightarrow 1}\right\}_{A}$.
The anchor S_{2} is linked to the watch frame S_{0} by a revolute joint of axis $\left(O_{2}, \vec{z}_{0}\right)$ and parameter $\beta=\left(\vec{x}_{0}, \vec{x}_{2}\right)=\left(\vec{y}_{0}, \vec{y}_{2}\right)$.
The periodic oscillation of anchor S_{2} permits releasing the rotation of the escapement wheel R_{E} (not modeled) which is in contact with S_{2} at point D. The contact forces at point D are known and expressed by the wrench $\left\{F_{R_{E} \rightarrow 2}\right\}_{D}$.

Hypotheses:

- the frame $R_{0}=\left(O_{1}, \vec{x}_{0}, \vec{y}_{0}, \vec{z}_{0}\right)$ is a Galilean frame,
- the problem is considered as planar,
- the gravity is downwards along $\vec{z}_{0,1,2^{\prime}}$
- all the joints are perfect,
- the torsion spring R_{T} acts onto S_{1} at point O_{1}. It has a constant stiffness k and its angle at rest is α_{0}. Its mass is neglected and its force wrench is denoted $\left\{F_{R_{T} \rightarrow 1}\right\}_{O_{1}}$.
- The contact force wrench between S_{1} and S_{2} at point A reads:

$$
\left\{F_{2 \rightarrow 1}\right\}_{A}=\left\{\begin{array}{c}
\vec{R}_{2 \rightarrow 1}=X_{21} \vec{x}_{1}+Y_{21} \vec{y}_{1} \\
\vec{M}_{2 \rightarrow 1}(A)=\overrightarrow{0}
\end{array}\right\}
$$

All the geometrical parameters are defined in figure 2.

Part 1: Mass Geometry

Solid S_{1} of mass m_{1} can be decomposed into 3 homogeneous solids, S_{A}, S_{B} and S_{C} :

- solid S_{A} is a cylinder of height h_{A}, radius $\underline{R_{A}}$ and axis $\left(O_{1}, \vec{z}_{0,1,2}\right)$. Its mass is m_{A}.
- solid S_{B} is a cylinder of height h, radius r and axis $\left(O_{1}, \vec{z}_{0,1,2}\right)$. Its mass is m_{B}.
- solid S_{C} is a half-cylinder of height h, radius r and axis $\left(C, \vec{z}_{0,1,2}\right)$. Its mass is m_{c}. The coordinates of the mass center G_{C} of solid S_{C} are given by: $\overrightarrow{O_{1} G_{C}}=\left(+L_{C}-\frac{4 K}{3 \pi}\right) \vec{y}_{1}+\frac{h}{2} \vec{z}_{1}$.
Solid S_{2} has negligible thickness, its mass center is $\mathrm{G}_{2}\left(\overrightarrow{O_{2} G_{2}}=x_{G_{2}} \vec{x}_{2}\right.$, its mass is m_{2}.
Do not calculate the masses of the solids.
The inertia matrices of S_{1}, S_{2} and S_{C} are given as:

$$
\bar{I}_{O_{1}, S}=\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & B_{1} & -D_{1} \\
0 & -D_{1} & C_{1}
\end{array}\right]_{R_{1}} \quad \bar{I}_{G_{2}, S_{2}}=\left[\begin{array}{ccc}
A_{2} & -F_{2} & 0 \\
-F_{2} & B_{2} & 0 \\
0 & 0 & C_{2}
\end{array}\right]_{R_{2}} \quad \bar{I}_{G_{C}, S_{C}}=\left[\begin{array}{ccc}
A_{s C} & 0 & 0 \\
0 & B_{S C} & 0 \\
0 & 0 & C_{S C}
\end{array}\right]_{R_{1}}
$$

1.1 Justify the inertia matrix form of solid S_{2} at point G_{2} expressed in basis R_{2}.
1.2 Justify the inertia matrix form of solid S_{1} at point O_{1} expressed in basis R_{1}.
1.3 Determine the coordinates of the mass center G_{1} of solid S_{1} in R_{1}, express $\overrightarrow{O_{1} G_{1}}$. For the next questions, these coordinates will be denoted: ${\vec{O} G_{1}}^{O_{1}} x_{G_{1}} \overrightarrow{1}_{1}+x_{G_{1}} \overrightarrow{1}_{1}+x_{G_{1}} \vec{z}_{1}$

Study of solid $S_{1}=\left\{S_{A} \cup S_{B} \cup S_{C}\right\}:$

1.4 Determine the inertia matrix of the small disc S_{B} at O_{1}. Detail the expression of the matrix terms.

For the next questions, one will use Benet's notations for the matrix terms: $A_{S A}, B_{S A}, C_{S A}, D_{S A}, E_{S A}, F_{S A}$
1.6 Determine the inertia matrix of the impact jewel S_{C} at O_{1}. Use the terms of $\overline{\bar{I}}_{G_{C}, S_{C}}$.
1.7 Determine the inertia matrix of S_{1} at O_{1}. Detail the expression of the matrix terms.

For the next questions, one will use Benet's notations for the matrix terms: $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}, F_{1}$

Part 2: Kinetics and dynamics

The kinematic scheme of the Swiss escapement anchor mechanism is represented in Figure 2. It is composed of:

- the watch frame S_{0} (watch housing), $R_{0}=\left(O_{1}, \vec{x}_{0}, \vec{y}_{0}, \vec{z}_{0}\right)$,
- solid $S_{1}\left(\right.$ mass $\left.m_{1}\right)$ linked to S_{0} by a revolute joint of axis $\left(O_{1}, \vec{z}_{0,1,2}\right)$ and parameter $\alpha=\left(\vec{x}_{0}, \vec{x}_{1}\right)=\left(\vec{y}_{0}, \vec{y}_{1}\right)$,
- solid S_{2} linked to S_{0} by a revolute joint of axis $\left(O_{2}, \vec{z}_{0,1,2}\right)$ and parameter $\beta=\left(\vec{x}_{0}, \vec{x}_{2}\right)=\left(\vec{y}_{0}, \vec{y}_{2}\right)$,
- a torsion spring R_{T} (not represented in Figure 2), of stiffness k, acting on S_{1}.
2.1 Graph of links, change of basis diagrams.
2.2 Give the wrench associated with the torsion spring R_{T} mechanical actions onto solid S_{1} at point O_{1} expressed in the coordinate system R_{1}.
2.3 Determine the kinetic wrench (momentum wrench) of solid S_{1} at point O_{1} in its motion with respect to R_{0}.
2.4 Determine the dynamic wrench of solid S_{1} at point O_{1} in its motion with respect to R_{0}.
- 2.5 Write the dynamic sum theorem for solid S_{1}.
2.6 Write the dynamic moment theorem applied to solid S_{1} at O_{1}
2.7 Determine the dynamic wrench of solid S_{2} at point O_{2} in its motion with respect to R_{0}.

Figure 2 : Schematic representation of S_{1} and S_{2}

Figure 3: Solid $S_{1}=\left\{S_{A} \cup S_{B} \cup S_{C}\right\}$

