Mechanics - Test 2

Duration 1h (10h15-11h15)
Authorised: Formula sheets (1 page +1 page for joints) and non-programmable calculator

Automotive steering system

Figure 1 - Steering and suspension systems

Figure 2 : Three-dimensional kinematic model

Figure 3 : Planar kinematic model DEF

Geometrical data

$$
\begin{aligned}
A B=l ; \overrightarrow{O D}= & a \overrightarrow{y_{0}}+b \overrightarrow{z_{0}} ; \overrightarrow{B C}=c \overrightarrow{x_{2}} ; \overrightarrow{E C}=d \overrightarrow{z_{2}} ; \overrightarrow{F E}=e \overrightarrow{y_{3}} ; \overrightarrow{F D}=f \overrightarrow{z_{0}} \\
& \text { th } x_{0}
\end{aligned}
$$

The suspension (Mc Pherson type) and the steering system for an automotive front axle are shown in Figure 1 and the corresponding kinematic model is in Figure 2. It comprises :

Damper body (1) connected to chassis (0) via a revolute joint of axis ($\mathrm{D}, \overrightarrow{x_{0,1}}$).
Motion parameter for $1 / 0: \alpha=\left(\overrightarrow{y_{0}}, \overrightarrow{y_{1}}\right)$.
Wheel frame (2) connected to damper (1) via a cylindrical joint of axis ($\mathrm{D}, \overrightarrow{\bar{z}_{1,2}}$).
Motion parameter for $2 / 1: z=\overrightarrow{\mathrm{DC}} \cdot \overrightarrow{z_{1,2}}$ and $\beta=\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}\right)$.

- Oscillating arm (3) connected to chassis (0) via a revolute joint of axis $\left(F, \overrightarrow{x_{0,3}}\right)$.

Motion parameter for $3 / 0: \theta=\left(\overrightarrow{y_{0}}, \overrightarrow{y_{3}}\right)$.

- Rack (4), whose displacement is controlled by the steering wheel rotation (not represented), is connected to chassis (0) via a prismatic joint of axis $\left(0, \overrightarrow{y_{0,4}}\right)$.
Motion parameter for $4 / 0 \quad y=\overrightarrow{O A} \cdot \overrightarrow{y_{0,4}}$
Moreover
The oscillating arm (3) is also connected to (2) via a spherical joint of centre E , with no parameter.
Rack (4) is connected to the wheel frame (2) via rod (5) with two spherical joints at A and B. No parameters are introduced for the two spherical joints and no physical frame is defined for (5).

Part I : Frame definition / Parameter definition / Constraint equations

1.1- Give the graph of links.
1.2-Give the change of basis diagrams,
I.3-Develop the constraint equation(s) associated with the joint with no parameter between solids (2) and (3).
1.4-Develop the constraint equation(s) associated with the joint with no parameter between solids 4 and 2, produced by the presence of rod (5). Do not try to express one of the parameters in terms of the others
1.5 - Give the degree of mobility of the system. Specify the motion(s) that are imposed in the real system

Partie II: Kinematics

II.1. Calculate the velocity and acceleration vectors of point E with respect to chassis $(0), \overrightarrow{V(E ; / 0)}$ and $\overrightarrow{A(E ; / O)}$ in terms of kinematic parameter θ, and its time-derivatives along with geometrical data.
II. 2 - Determine the velocities of point C with respect to $1, \overrightarrow{V(C / 1)}$, and for the motion of 1 with respect to $0, \overrightarrow{V(\mathrm{C}, 1 / 0)}$.
II. 3 - Determine the kinematic screw of $2 / 0$ at point C.

