

Evaluation de fin de semestre - Eléments de correction

Partie A - Etude de l'entrainement de la table de pose

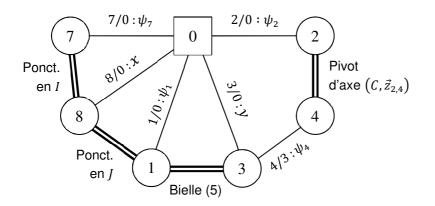
- **A.1.** Le mouvement de 3/0 est une rotation d'axe $(O_3, \vec{x}_{0,3})$ donc $\vec{V}(B/0) \perp [O_3B]$. $I_{20} = (O_1A) \cap (O_3B)$ car $\vec{V}(A/0) = \vec{V}(A,2/0)$ et $\vec{V}(B/0) = \vec{V}(B,2/0) = \vec{V}(B,3/0)$. On construit $\vec{V}(B,2/0)$ à l'aide de I_{20} (ou par équiprojectivité) connaissant $\vec{V}(A,2/0)$.
- **A.2.** $\vec{V}(C,3/0) \perp [O_3C]$ car $O_3 = I_{30}$. On construit $\vec{V}(C,3/0) = \vec{V}(C/0)$ à l'aide de I_{30} (ou par équiprojectivité) connaissant $\vec{V}(B,3/0)$.
- **A.3.** (O_3CDO_4) est un parallélogramme, donc (DC) lié à R_5 reste parallèle à (O_3O_4) lié à R_0 . De plus les trajectoires de C et D sont des cercles de même rayon c respectivement de centre O_3 et O_4 . Le mouvement de 5/0 est donc une translation circulaire.

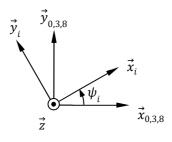
Tous les points liés à 5 ont même vitesse dans le mouvement 5/0, on trace donc $\vec{V}(D/0) = \vec{V}(D,5/0)$ et $\vec{V}(E/0) = \vec{V}(E,5/0)$ tel que $\vec{V}(C,5/0) = \vec{V}(C,3/0)$

- **A.4.** $\|\vec{V}(A, 1/0)\| = 0.045 \, ms^{-1} \, \text{pour} \, \|\vec{V}(E, 5/0)\| = 0.15 \, ms^{-1} \, \text{alors} \, \|\vec{\Omega}(1/0)\| = 0.45 \, rads^{-1} = 4.3 \, tr/min$
- **A.5.** $\vec{V}(B/0) = \vec{V}(B, 2/0) = e\dot{\alpha}_1\vec{y}_1 + a(\dot{\alpha}_1 + \dot{\beta})\vec{z}_2$ $\vec{\Gamma}(B/0) = \vec{\Gamma}(B, 2/0) = e\ddot{\alpha}_1\vec{y}_1 + e\dot{\alpha}_1^2\vec{z}_1 + a(\ddot{\beta} + \ddot{\alpha}_1)\vec{z}_2 - a(\dot{\beta} + \dot{\alpha}_1)^2\vec{y}_2$
- **A.6.** $\vec{V}(C/0) = \vec{V}(C, 3/0) = c\dot{\alpha}_3\vec{z}_3$ $\vec{\Gamma}(C/0) = \vec{\Gamma}(C, 3/0) = c\ddot{\alpha}_3\vec{z}_3 - c\dot{\alpha}_3^2\vec{y}_3$
- **A.7.** $\{\mathcal{V}_{5/0}\} = \{\vec{\Omega}(5/0) = \vec{0} \; ; \; \vec{V}(C, 5/0)\}_{C}$ donc le mouvement de 5/0 est une translation. Alors $\vec{V}(E, 5/0) = \vec{V}(C, 5/0) = \vec{V}(C, 3/0)$ et $\vec{\Gamma}(E, 5/0) = \vec{\Gamma}(C, 5/0) = \vec{\Gamma}(C, 3/0)$.

Partie B - Etude de la pince de préhension des quilles

B.1. Graphe de liaisons et changement de base :





Pour $i \in \{1,2,4,7\}$

B.2. Equation de joint bielle (5) :

$$\|\overrightarrow{AB}\|^2 = b^2 = Cte$$
 avec $\overrightarrow{AB} = \overrightarrow{AO_1} + \overrightarrow{O_{1,2}B} = a \vec{x}_1 + y \vec{y}_0$
 $b^2 = a^2 + y^2 + 2ay \sin \psi_1$

B.3. Equation de liaison pivot (4)/(2):

$$\vec{z}_2 = \vec{z}_4 \text{ (d\'ejà v\'erifi\'e car mouvement plan) et } \overrightarrow{C_2C_4} = \overrightarrow{C_2B} + \overrightarrow{BO_{1,2}} + \overrightarrow{O_2C_4} = -c \ \vec{x}_4 - y \ \vec{y}_0 + d \ \vec{x}_2 - e \ \vec{y}_2 - c \ \cos\psi_4 + d \ \cos\psi_2 + e \ \sin\psi_2 = 0 \\ -c \ \sin\psi_4 - y + d \ \sin\psi_2 - e \ \cos\psi_2 = 0$$

B.4.

a)
$$\psi_1 = 0$$
 et $\psi_2 = 0$ pince fermée.

$$-3a^2 + y^2 = 0$$
 soit $y = -a\sqrt{3}$
 $-c \cos \psi_4 + d \cos \psi_2 = 0$ soit $\cos \psi_4 = d / c = \sqrt{3}/2$ donc $\psi_4 = \pi/6$
 $-c \sin \psi_4 - y - e = 0$ soit $e = -a\sqrt{3}/2 + a\sqrt{3} = a\sqrt{3}/2$

b) $\psi_1 = \pi/2$ pince ouverte.

$$\begin{array}{l} -3a^2+y^2+2ay=0 \text{ soit } & (y-a)(y+3a)=0 \quad \text{donc } y=-3a \\ -c & \cos\psi_4+d & \cos\psi_2+e & \sin\psi_2=0 \text{ soit } -a\sqrt{3}.1/2+3a/2.\sqrt{3}/2-a\sqrt{3}/2.1/2=0 \\ -c & \sin\psi_4-y+d & \sin\psi_2-e & \cos\psi_2=0 \quad \text{soit } & -a\sqrt{3}.\sqrt{3}/2+3a-3a/2.1/2-a\sqrt{3}/2.\sqrt{3}/2=0 \end{array}$$

Remarque : O1, A et B alignés, B, C et D aussi.

B.5.

a)
$$\vec{V}(I,8/7) = \vec{0}$$
 soit $\vec{V}(I,8/0) = \vec{V}(I,7/0)$ donc $\dot{x} = R_7 \, \dot{\psi}_7$ $\vec{V}(J,8/1) = \vec{0}$ soit $\vec{V}(J,8/0) = \vec{V}(J,1/0)$ donc $\dot{x} = -R_1 \, \dot{\psi}_1$ Soit $\dot{\psi}_7 = -R_1 \, \dot{\psi}_1/R_7$ et $\dot{x} = -R_1 \, \dot{\psi}_1$

b)
$$\Delta\psi_1=\pi/2$$
 donc $\Delta\psi_7=-R_1/R_7$. $\pi/2$ et $\Delta x=-R_1$. $\pi/2$
Soit $\Delta\psi_7=-\pi$ et $\Delta x=-50\pi$ mm

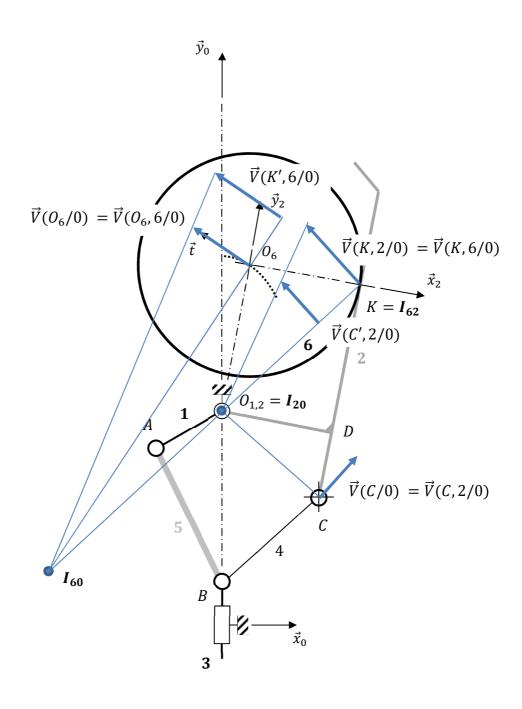
B.6.
$$\vec{V}(O_6/0) = \vec{V}(O_6, 6/0) = \lambda \vec{y}_2 - \lambda \psi_2 \vec{x}_2$$

B.7.

- a) Mouvement de 2/0 est une rotation d'axe $(O_2, \vec{z}_{0,2})$ donc $\vec{V}(K, 2/0) \perp [O_2K]$. On construit $\vec{V}(K, 2/0)$ à l'aide de $O_2 = I_{20}$ (ou par équiprojectivité) connaissant $\vec{V}(C/0) = \vec{V}(C, 2/0)$. De plus $\vec{V}(K, 6/0) = \vec{V}(K, 2/0)$ d'après la condition de non glissement en K.
- b) I_{60} est à l'intersection des perpendiculaires à $\vec{V}(K,6/0)$ et $\vec{V}(O_6,6/0)$ de direction \vec{t} . On construit $\vec{V}(O_6/0) = \vec{V}(O_6,6/0)$ à l'aide de I_{60} (ou par équiprojectivité) connaissant $\vec{V}(K,6/0)$.

c)
$$\vec{P}_{6/2}(K) = (\vec{\Omega}_{6/2}, \vec{x}_2) \vec{x}_2 = \vec{0}$$
 et $\vec{R}_{6/2}(K) = \vec{\Omega}_{6/2} - \vec{P}_{6/2}(K) = (\dot{\psi}_6 - \dot{\psi}_2) \vec{z}_{0,2,6}$

FIMI 2ème année - durée 2h



Document réponse DR2