

INSTITUT NATIONAL

Wednesday 15th April 2020

Scan 2nd - Mechanics – TEST 4

The planar(2D) model below is used to study the rolling of a ship carrying a load by a crane such as the seaweed harvester (goémonier) shown in the photo.

It comprises:

the ship S₁ whose motion with respect to R₀ (Galilean) . is assimilated to a rotation of axis $(G, \overrightarrow{x_{0,1}})$

Motion parameter 1/0 : θ

arm S₂ connected to S1 by a revolute joint of axis $(A, \overrightarrow{x_{1,2}})$

Motion parameter 2/1 : α

of the seaweed load S3 connected S2 by a revolute joint of axis $(B, \overrightarrow{x_{2,3}})$

Motion parameter 3/2 : φ

Mass geometry:

S₁: centre of mass G, mass m_1 and moment of inertia A_1 with respect to $(G, \vec{x_1})$ which is a principal direction of inertia

S₂: centre of mass G₂ (at mid-length of AB), mass m_2 and negligible cross-section.

S₃: made of a rigid, massless link BC plus a sphere of centre C, radius R and mass m_3

External mechanical actions:

- The swell exerts a periodic torque (moment) $\overline{M_{h/1}(G)} = M_h \sin \omega t \overrightarrow{x_{0,1}}$ on S₁
- The <u>pressure of the water on the shell</u> combined with <u>the weight of the ship plus</u> that of the <u>arm and seaweed</u> on $\{S_1 + S_2 + S_3\}$ generate the following force wrench:

$$\{\overrightarrow{F_{R/1}}\} = \begin{cases} \overrightarrow{F_{R/1}} = \overrightarrow{0} \\ \overrightarrow{M_{R/1}}(G) = M_R \overrightarrow{x_{0,1}} \end{cases}$$

For the sake of simplicity, it is further assumed that the moment varies linearly with the angle of rolling θ such that $M_R = -K \theta$.

Part I – Mass geometry :

- **Q1** Give the matrix of inertia of S₃ at point C and then at point B (in terms of m_3 , R and d), identify the moment of inertia I₃ of S₃ with respect to axis ($B, \vec{x_3}$).
- **Q 2** Give the matrix of inertia of S₂ at point A (in terms of m_2 and L).
- **Q** 3 Assuming that $\alpha = \operatorname{cst}$ (i.e. S_2 does not move with respect to S_1), give the moment of inertia I_{Σ} of $\Sigma = \{S_1 + S_2\}$ with respect to axis $(G, \overrightarrow{x_1})$.

Part II – Kinetics :

Considering the following hypotheses / simplifications:

- $\alpha = Cste S_2$ does not move with respect to S_1
- e = 0 which implies that $A \equiv G$
- *G* is fixed in the Galilean frame R₀
- the mass of S_2 is neglected compared with that of S_1
- S_3 is assimilated to a point (lumped) mass m_3 located at point C
- **Q4** Calculate the sum and moment at G of the Galilean dynamic wrench for $\Sigma = \{S_1 + S_2\}$.
- **Q 5** Calculate the sum and moment at B of the Galilean momentum (kinetic) wrench for S₃. Hint: keep the expressions of the components of $\vec{V}(C/0)$ in R_2 and R_3
- **Q 6** Calculate the sum and moment at B of the Galilean dynamic wrench for S₃. Hint: keep the expressions of the components of $\vec{A}(C/0)$ in R₂ and R₃

Part III - Dynamics :

Using the same hypotheses and simplifications as in Part II

Q 7 - Develop the dynamic moment theorem for $\Sigma_1 = \{S_3\}$ projected on($B, \overrightarrow{x_{3,2}}$). Develop the dynamic moment theorem for $\Sigma_2 = \{S_1 + S_2 + S_3\}$ projected on($G, \overrightarrow{x_{0,1}}$). <u>Indication</u>: do not try to express the dynamic moment of S_3 at point G but use the notation $\overrightarrow{\delta_3^0(G)} = \delta_3 \overrightarrow{x_{0,1}}$.