Scan $2^{\text {nd }}-$ Mechanics - TEST 4

The planar(2D) model below is used to study the rolling of a ship carrying a load by a crane such as the seaweed harvester (goémonier) shown in the photo.
It comprises:

- the ship S_{1} whose motion with respect to R_{0} (Galilean) is assimilated to a rotation of axis $\left(G, \overrightarrow{x_{0,1}}\right)$

Motion parameter 1/0: θ

- arm S_{2} connected to $S 1$ by a revolute joint of axis $\left(A, \overrightarrow{x_{1,2}}\right)$

- of the seaweed load S_{3} connected S 2 by a revolute joint of axis $\left(B, \overrightarrow{x_{2,3}}\right)$

Motion parameter $3 / 2: \varphi$

Mass geometry:

S_{1} : centre of mass G , mass m_{1} and moment of inertia A_{1} with respect to $\left(G, \overrightarrow{x_{1}}\right)$ which is a principal direction of inertia
S_{2} : centre of mass G_{2} (at mid-length of AB), mass m_{2} and negligible cross-section.
S_{3} : made of a rigid, massless link $B C$ plus a sphere of centre C, radius R and mass m_{3}

External mechanical actions:

- The swell exerts a periodic torque (moment) $\overrightarrow{M_{h / 1}(G)}=M_{h} \sin \omega t \overrightarrow{x_{0,1}}$ on S_{1}
- The pressure of the water on the shell combined with the weight of the ship plus that of the arm and seaweed on $\left\{S_{1}+S_{2}+S_{3}\right\}$ generate the following force wrench:

$$
\left\{\overrightarrow{F_{R / 1}}\right\}=\left\{\begin{array}{c}
\overrightarrow{F_{R / 1}}=\overrightarrow{0} \\
\overrightarrow{M_{R / 1}}(G)=M_{R} \overrightarrow{x_{0,1}}
\end{array}\right.
$$

For the sake of simplicity, it is further assumed that the moment varies linearly with the angle of rolling θ such that $\mathrm{M}_{\mathrm{R}}=-\mathrm{K} \theta$.

Part I-Mass geometry:

Q 1-Give the matrix of inertia of S_{3} at point C and then at point B (in terms of m_{3}, R and d), identify the moment of inertia I_{3} of S_{3} with respect to axis $\left(B, \overline{x_{3}}\right)$.
Q 2 - Give the matrix of inertia of S_{2} at point A (in terms of m_{2} and L).
Q 3-Assuming that $\alpha=$ cst (i.e. S_{2} does not move with respect to S_{1}), give the moment of inertia I_{Σ} of $\Sigma=\left\{\mathrm{S}_{1}+\mathrm{S}_{2}\right\}$ with respect to axis $\left(G, \overrightarrow{x_{1}}\right)$.

Part II - Kinetics :

Considering the following hypotheses / simplifications:

- $\alpha=$ Cste S_{2} does not move with respect to S_{1}
- $\mathrm{e}=0$ which implies that $A \equiv G$
- G is fixed in the Galilean frame R_{0}
- the mass of S_{2} is neglected compared with that of S_{1}
- S_{3} is assimilated to a point (lumped) mass m_{3} located at point C

Q 4-Calculate the sum and moment at G of the Galilean dynamic wrench for $\Sigma=\left\{\mathrm{S}_{1}+\mathrm{S}_{2}\right\}$.
Q 5 - Calculate the sum and moment at B of the Galilean momentum (kinetic) wrench for S_{3}.
Hint: keep the expressions of the components of $\vec{V}(C / 0)$ in R_{2} and R_{3}
Q 6 - Calculate the sum and moment at B of the Galilean dynamic wrench for S_{3}.
Hint: keep the expressions of the components of $\vec{A}(C / 0)$ in R_{2} and R_{3}

Part III - Dynamics:

Using the same hypotheses and simplifications as in Part II

Q 7 - Develop the dynamic moment theorem for $\Sigma_{1}=\left\{S_{3}\right\}$ projected on $\left(B, \overrightarrow{x_{3,2}}\right)$.
Develop the dynamic moment theorem for $\Sigma_{2}=\left\{\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}\right\}$ projected on $\left(G, \overrightarrow{x_{0,1}}\right)$.
Indication: do not try to express the dynamic moment of S_{3} at point G but use the notation $\overrightarrow{\delta_{3}^{0}(G)}=\delta_{3} \overrightarrow{x_{0,1}}$.

