MECHANICS - Test 1

16th November 2020 _ 1:30 hour (10:15-11:45)
Authorised material: personal formula sheet (1 page +1 formula sheet for the joints) Non-programmable pocket calculator

Write and sign on your paper the following sentence: "I certify that I will not cheat, and I will follow the guidelines given in the subject, I will not chat with anyone else than the teacher supervising the exam".

Particular attention will be paid regarding the quality of writing and the justifications.
The two exercises are independent.

1 Aerodynamic actions on a helicopter main rotor ($\sim 12 \mathrm{pts}$)

The main rotor of a helicopter is often made of three blades positioned 120° apart. One of these blades is represented in Figure 1, Solid S_{2}, linked to the helicopter (solid S_{1}) by a revolute joint of axis $\left(O, \vec{z}_{1,2}\right.$) and parameter $\theta\left(\mathrm{S}_{2} / \mathrm{S}_{1}\right)$, where $\theta=\left(\vec{x}_{1}, \vec{x}_{2}\right)$.

Motion of the blade:

The motion of the blade S_{2} with respect to S_{1} is a rotation about axis $\left(0, \overrightarrow{z_{1,2}}\right)$. Considering a point M belonging to the blade longitudinal axis $\left(\overrightarrow{O M}=r \overrightarrow{x_{2}}\right)$, its linear velocity with respect to R_{1} is given by:

$$
\vec{V}(M / 1)=r \dot{\theta} \vec{y}_{2}=r \omega \vec{y}_{2}
$$

Figure 1: Blade of a helicopter main rotor

Aerodynamic forces on the blade: Figure 2 shows the distributions of the aerodynamic forces along a blade of length L. At every elemental segment of length $d r$ centred at M, the corresponding elemental aerodynamic forces are expressed as:

Figure 2: Aerodynamic forces on the blade
Where $d \vec{P}, d \vec{T}$ are the elemental lift and drag forces respectively.
1.1 - Find the sum and moment at O of the aerodynamic forces wrench on the blade S_{2}.
1.2 - Assuming that these mechanical actions do not vary with the rotor rotation, give the expressions of the sum and moment at O of the aerodynamic wrench generated by the three blades of the main rotor (three blades are 120° apart).

* It will be admitted with no proof that:
- the drag forces cancel two by two (resisting force).
- the moment generated at point O by the lift forces $d \vec{P}$ is nil.

Global mechanical actions on the helicopter

When flying in translation and at constant speed, the helicopter shown in Figure 3 is submitted to:

- Its weight (mass m, centre of mass $G, \overrightarrow{z_{1}}$ vertical upward),
- The aerodynamic actions on the main and tail rotors are characterised by the two force wrenches :
$\left\{T_{\text {Aero } / \text { MainRotor }}\right\}_{O}=\left\{\begin{array}{c}\overrightarrow{R_{A / M R}}=R_{x} \cdot \overrightarrow{x_{1}}+R_{y} \cdot \overrightarrow{y_{1}}+R_{z} \cdot \overrightarrow{z_{1}} \\ \overrightarrow{M_{A / M R}(O)}=M_{R} \cdot \overrightarrow{z_{1}}\end{array} \quad\left\{T_{\text {Aero } / \text { TailRotor }\}_{B}}=\left\{\begin{array}{c}\overrightarrow{R_{A / T R}}=Q \cdot \overrightarrow{y_{1}} \\ \overrightarrow{M_{A / T R}(B)}=M_{Q} \cdot \overrightarrow{Z_{1}}\end{array}\right.\right.\right.$
- The aerodynamic actions on the cabin represented by the wrench :

$$
\left\{T_{\text {Aero } / \text { Cabin }}\right\}_{A}=\left\{\begin{array}{c}
\overrightarrow{R_{A / C b}}= \\
\overrightarrow{T_{1}} \cdot \overrightarrow{x_{1}}+T_{2} \cdot \overrightarrow{y_{1}}+P_{C} \cdot \overrightarrow{z_{1}} \\
\overrightarrow{M_{A / C b}(A)}=\overrightarrow{0}
\end{array}\right.
$$

Figure 3: Mechanical actions on the helicopter
1.3 - Develop the equations of equilibrium for the helicopter and deduce the practical interest of the tail rotor.
** that question is independent from the previous ones
1.4-Specify the particular motion of the helicopter associated with the aerodynamic wrench used in I.2 .

2 Graphical Statics : Study of a chairlift disengageable clamp (~8pts)

The proposed study concerns a detachable chairlift clamp. Chairlift transport is usually achieved by a moving cable to which nacelles are attached. In order to have a higher ascent rate, the cable running speed must be increased, possibly leading to safety problems when boarding and disembarking skiers. A device is therefore used which allows the chair to be disengaged from the cable in the embarkation and disembarkation stations.

Figure 4: Chairlift disengageable clamp
The clamping system (Figure 4) makes disengagement possible. It is symmetrical with respect to the plane (jaw centre $(A), \overrightarrow{x_{0}}, \overrightarrow{z_{0}}$) with two halves labelled a and b respectively. On account of this symmetry, an equivalent planar model can be constructed which is shown in Figure 5 for the passage-in-station mode. In this context, rollers (6, 7, 8 a and $8 b$) are in contact with specific rails (attached to the ground) imposing their positions. The clamp is open and has no contact with the cable.

Figure 5: Planar model of a chairlift disengageable clamp

Disengageable clamp in passage-in-station mode

The graphical analysis will be developed using the figure in the last page. The figure is represented with a background grid. To ease the drawing on your personal paper sheet, the points coordinates are given hereafter in the basis $\left(K, \vec{z}_{0}, \vec{x}_{0}\right)$:

$$
K(0,0) \quad A(0,15) \quad B(-1.5,3.5) \quad C(-13.5,0.5) \quad D(2,-5.5) \quad E(-15,-2.5) \quad F(5,8.5)
$$

The following hypotheses will be used:

- Action $\vec{R}_{\text {Nacelle/2 }}$ from the nacelle on part 2 is known it is a sliding vector passing through A ,
- Action $\vec{R}_{4 / 1}$ developed by the spring is known,
- The contact at E between the rail and roller 6 is frictionless so that the corresponding mechanical action is purely vertical along \vec{z}_{0}.

Drawing scale: $\mathbf{2 0 8 3} \mathbf{N} / \mathbf{c m}$

- $\vec{R}_{4 / 1}$ is represented by a vector of length 6 cm ,
- $\vec{R}_{\text {Nacelle } / 2} \quad$ is represented by a vector of length $3,8 \mathrm{~cm}$.

Remark : one will justify all the graphical constructions in the answer sheet

2.1 - Using the equilibrium of the assembly $\{1,6\}$ draw the actions $\vec{R}_{\text {Rail/6 }}$ and $\vec{R}_{2 / 1}$ and give their magnitude in Newton.
2.2 - Using the equilibrium of the assembly $\{2,7,8\}$ (NB: treat the following questions in order)

A - Build the resulting force $\vec{R}_{(\text {Nacelle }+1) / 2}$ and give its magnitude in Newton Remark: this resultant is the sliding vector passing through A accounting for the combined actions of the nacelle and solid 1 on solid 2.

B - Build the resulting force $\vec{R}_{(\text {Nacelle }+1+3) / 2}$ and give its magnitude in Newton Remark : this resultant is the sliding vector whose line of action will be determined, accounting for the combined actions of the nacelle, solid 1 and the spring system on solid 2

C - Why the orientation of this resulting force is interesting from a functional viewpoint? Explain qualitatively the methodology to be put in place in order to solve the equilibrium of the assembly $\{2,7,8\}$ NB: do not develop the graphical construction

LAST NAME:

First Name :

Group :

