Kinematics

Please copy the following sentence: 'I hereby certify that I will not cheat and have no exchange of information with anybody but the teacher invigilating the test' and sign on your paper

The planar system shown in the figure below is used to operate a needle (S4) via a motion transformer known as Hoeckens mechanism.The principle of operation can be visualized with the animation "Hoeckens_linkage_Animated.gif".

The mechanism comprises :

- A crankshaft S 1 , connected to the ground S 0 by a revolute joint of axis (O, \vec{z}).

Motion parameter for $1 / 0: \quad \theta=\left(\vec{x}_{0}, \vec{x}_{1}\right)$

- A rod S 2 , connected to crankshaft S 1 by a revolute joint of axis (A, \vec{z})

$$
\text { Motion parameter for 2/0 : } \quad \varphi=\left(\vec{x}_{0}, \vec{x}_{2}\right)
$$

- A rocker S 3 , connected to rod S 2 by a prismatic joint of axis $\left(B, \vec{x}_{2,3}\right)$

$$
\text { Motion parameter for } 3 / 2: \quad x=\overrightarrow{A B} \cdot \vec{x}_{2,3}
$$

- Needle S4, connected to the ground S0 by a prismatic joint of axis ($D, \vec{y}_{0,4}$)

$$
\text { Motion parameter for } 4 / 0: \quad y=\overrightarrow{D C} \cdot \vec{y}_{0}
$$

Moreover :

- Rocker S 3 is connected to the ground S 0 by a revolute joint of axis (B, \vec{z}) with no parameter.
- Needle S 4 is connected to rod S 2 by a linear annular joint of axis $\left(E, \vec{x}_{0,4}\right)$ with no parameter.

Questions :

Q1 Graph of links and change of basis diagrams.
Q2 Develop the constraint equation(s) associated with the closure at point B.
Q3 Deduce the expressions of x and φ in terms of θ and the geometrical parameters a and r. (/2)
Q4 Calculate the velocity and acceleration of point A with respect to the ground S 0 .
Q4 Specify the nature of the motion $3 / 2$ and give the sum and moment about B of its kinematic screw (wrench) in terms of $\theta, \dot{\theta}, a$ and r.

Q5 Express the coordinates of $B \vec{C}$ in terms of d and x. Deduce the velocity vector of point C with respect to the ground S 0 in terms of d, x, \dot{x} and $\dot{\varphi}$

Q6 Give the condition imposed by the closure at point \mathbf{C}. Deduce the expression of y in terms of d, x and φ

Q7 Determine the degree of mobility of the mechanism.

Important:

Please note that:
a) 1 mark will be attributed to the quality of written expression, the respect of appropriate symbols and methodologies
b) The absence of the 'no-cheating' statement and signature will be understood as a refusal to comply with the no-cheating policy and a mark of $\mathbf{0 / 2 0}$ will therefore be systematically assigned to this test.

