

Kinematics

Please copy the following sentence: 'I hereby certify that I will not cheat and have no exchange of information with anybody but the teacher invigilating the test' and **sign** on your paper

The planar system shown in the figure below is used to operate a needle (S4) via a motion transformer known as Hoeckens mechanism. The principle of operation can be visualized with the animation "Hoeckens_linkage_Animated.gif".

The mechanism comprises :

- A crankshaft S1, connected to the ground S0 by a revolute joint of axis (O, \vec{z}) . *Motion parameter for 1/0 :* $\theta = (\vec{x}_0, \vec{x}_1)$
- A rod S2, connected to crankshaft S1 by a revolute joint of axis (A, \vec{z}) *Motion parameter for 2/0 :* $\varphi = (\vec{x}_0, \vec{x}_2)$
- A rocker S3, connected to rod S2 by a prismatic joint of axis $(B, \vec{x}_{2,3})$

Motion parameter for 3/2 : $x = \overrightarrow{AB} \cdot \overrightarrow{x}_{23}$

• Needle S4, connected to the ground S0 by a prismatic joint of axis $(D, \vec{y}_{0,4})$ *Motion parameter for 4/0 :* $y = \overrightarrow{DC} \cdot \vec{y}_0$

Moreover :

- Rocker S3 is connected to the ground S0 by a revolute joint of axis (B, \vec{z}) with no parameter.
- Needle S4 is connected to rod S2 by a linear annular joint of axis $(E, \vec{x}_{0,4})$ with no parameter.

Questions :

Q1	Graph of links and change of basis diagrams.	(/2)
Q2	Develop the constraint equation(s) associated with the closure at point B.	/3)
Q3	Deduce the expressions of x and φ in terms of θ and the geometrical parameters a and	id <i>r</i> . <mark>(/2)</mark>
Q4	Calculate the velocity and acceleration of point A with respect to the ground S0.	(/2.5)
Q4	Specify the nature of the motion 3/2 and give the sum and moment about B of its kinen (wrench) in terms of θ , $\dot{\theta}$, a and r .	natic screw (/3)
Q5	Express the coordinates of $B\vec{C}$ in terms of d and x . Deduce the velocity vector of p respect to the ground S0 in terms of d, x, \dot{x} and $\dot{\phi}$	ooint C with (/2.5)
Q6	Give the condition imposed by the closure at point C. Deduce the expression of y is $d,x {\rm and} \varphi$	in terms of <mark>(/3)</mark>
Q7	Determine the degree of mobility of the mechanism.	(/1)

Important:

Please note that:

- a) 1 mark will be attributed to the quality of written expression, the respect of appropriate symbols and methodologies
- **b**) The absence of the 'no-cheating' statement and signature will be understood as a refusal to comply with the no-cheating policy and a mark of 0/20 will therefore be systematically assigned to this test.