

Final test of Mechanics of Systems - Shimmy of an aircraft wheel

Duration: 3 hours

<u>Authorised</u>: Calculators + 2 personal formula sheets + table of usual joints + table of inertia matrices.

1 - Presentation - Modelization :

The proposed study focuses on the shimmy motion (vibration) of the wheel of a front landing gear (framed in the figure on the right). A video of this behaviour can be viewed (after the test!) at the link: https://www.youtube.com/watch?v=-EIG5pW0y4U

More generally, this phenomenon is likely to occur on all wheels mounted on a « rotating » and deformable support (trailers, motorbikes, shopping trolley, etc...).

This study proposes to highlight the shimmy on a simplified mechanical model, presented in **figure 1**.

In addition to the solid S_0 which represents the runway track, this mechanism is composed of four solids : $S_{1^{\bullet}}$, S_1 , S_2 and S_3 .

- S_{1^*} represents the aircraft, whose **motion is known** and consequently won't be studied. This motion is described as a translation, which is linear (straight) and uniform (with constant velocity v) along the direction \vec{x}_0 .
- S_1 represents the landing gear leg. This leg is a deformable structure, whose extremity carries the fork S_2 . In the proposed model, only the lateral motion, induced by the elastic deformation of the leg, is taken into account. The link S_1 / S_{1^*} is thus defined as a prismatic joint of axis $(O_1, \vec{y}_{0,1})$.

Parameter of the motion $1/1^*$: $\hat{y} = \overrightarrow{O_1^* O_1} \cdot \vec{y}_{0,1}$

 S_2 represents the fork which carries the wheel S_3 ; S_2 is linked to S_1 by a revolute joint of axis $(O_1, \vec{z}_{0,1,2})$

Parameter of the motion 2/1 : $\theta = (\vec{x}_{0.1}, \vec{x}_2)$

 S_3 is the wheel of the landing gear; S_3 is linked to the fork S_2 by a revolute joint of axis $(O_3, \vec{y}_{2,3})$

Parameter of the motion 3/2: $\varphi = (\vec{x}_2, \vec{x}_3)$

Furthermore, S_3 is in contact with the runway track at I .

Mass geometry:

- S, is considered as a solid of negligible mass,
- S_2 is a solid, of mass m_2 , of centre of mass G_2 such that $\overrightarrow{O_1G_2} = -a\,\vec{x}_2$

Matrix of inertia at
$$G_2$$
 of S_2 :
$$= \begin{bmatrix} A_2 & 0 & -E_2 \\ 0 & B_2 & 0 \\ -E_2 & 0 & C_2 \end{bmatrix}_2$$

- S_3 , of mass m_3 , of centre of mass O_3 , is a part of revolution of axis $(O_3, \vec{y}_{2,3})$.

Matrix of inertia at
$$O_3$$
 of S_3 : $= \begin{bmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & A_3 \end{bmatrix}_3$

Assumptions and specific mechanical actions:

- R_0 is galilean with \vec{z}_0 vertical and ascending.
- Except the contact between the wheel and the runway track, all the joints are perfect.
- The geometric data are systematically given and also repeated in figure 1.
- A traction / compression spring, linear and massless, of stiffness k, whose action is nil when y is nil, is mounted between S_1 and S_{1*} . This spring models the elastic transversal deformation of the landing gear leg. For convenience, it has been represented slightly shifted, but its line of action is the line $(O_1, \vec{y}_{0,1})$.
- A torsional "anti-shimmy" damper, of axis $(O_1,\vec{z}_{0,1,2})$ and viscous damping coefficient b, not represented in figure 1, is mounted between S_1 and S_2 .
- The wrench of mechanical actions of the runway track on the wheel is given by :

$$\{T_{0/3}\} = \begin{cases}
\vec{R}_{0/3} = X_{03} \vec{x}_2 + Y_{03} \vec{y}_2 + Z_{03} \vec{z}_2 \\
\vec{M}_{0/3} (I) = N_{03} \vec{z}_2
\end{cases}$$

 \bullet The transverse effort $Y_{\rm 03}$ is given by the drift law of the tyre :

$$Y_{03} = -D \, \delta \qquad \text{where} \quad \delta = \arctan \left(\frac{\vec{V}(I/0).\,\vec{y}_2}{\vec{V}(I/0).\,\vec{x}_2} \right) \quad \text{is the drift angle of the tyre}$$

- N_{03} is the self aligning moment of the wheel, given by : $N_{03} = A_0 \delta$
- D and \underline{A}_0 are known constants, relative to the tyre's behaviour.
- The normal effort Z_{03} will be considered as known, determined using another model (not studied here) representing the global dynamic behaviour of the aircraft.
- The conditions for the contact tyre / track impose the longitudinal non-slipping of the wheel on the track, which results in :

$$\vec{V}(I,3/0).\vec{x}_2=0$$

2 - Kinematics ~ 3 Pts

- Q1 Draw the graph of links.
- Write the equation translating the condition of contact at I. Explain why it constitutes a so-called "mounting" equation and explain why it won't be counted in the complete table unknowns / equations.
- Write the constraint equation resulting from the longitudinal non-slippping at I. Express the drift angle δ depending on the motion parameters.

3 - Kinetics ~ 5 Pts

- ${\bf Q5}$ Determine the galilean dynamic wrench of S_1 at O_1 .
- $\mathbf{Q6}$ Determine the galilean kinetic wrench of S_2 at G_2 .
- \mathbf{Q}_1 Determine the galilean dynamic wrench of S_2 at G_2 and then at O_1 .
- Q8- Determine the galilean dynamic wrench of S_3 at O_3 and then at O_1 .

4 - Dynamics ~ 8 Pts

- Q 9 Establish the complete table of unknowns / equations, and then determine the reduced table (i.e. minimum system), which permits the obtention of the motion equations.
- Q 10 Develop the equations of the minimum system.
- **Q 11 -** Verify that the position defined by $y=y_S=0$, $\theta=\theta_S=0$ and $\dot{\phi}=\omega_S=Cst$ is an admissible stationary position of the mechanism. Determine ω_S and the contact mechanical actions $X_{03,S}$, $Y_{03,S}$ and $N_{03,S}$ in this context.
- **Q 12 -** The small motions of the system will now be analyzed, by writing : $y = y_S + \overline{y} = \overline{y}$ and $\theta = \theta_S + \overline{\theta} = \overline{\theta}$, with \overline{y} , $\overline{\theta}$ and their time-derivatives which are considered small.
 - Show, by linearizing the equation translating the longitudinal non-slipping at I, that the assumption of a plane's motion at speed v=Cst leads to its own rotation velocity of the wheel $\dot{\phi}=\omega_S=Cst$.
 - After having linearized the expression of the drift angle δ , give the expressions of X_{03} , Y_{03} and N_{03} in the context of small motions.
 - Write the system of equations of small motions in \overline{y} and $\overline{\theta}$, considering that $A_0 << \ell \, D$. Expressing: $I_\Delta = C_2 + A_3 + m_2 \, a^2 + m_3 \, \ell^2$ and $M_\Delta = m_3 \, \ell + m_2 \, a$ the system will be written under the matrix form (2*2):

$$[M] \ddot{X} + [C] \dot{X} + [K] X = 0 \quad \text{where} \quad X = \begin{pmatrix} \overline{\theta} \\ \overline{y} \end{pmatrix}$$

<u>Remark</u>: The search for the time-dependent solutions of this system, <u>which is not requested</u>, would demonstrate that the motions become unstable if v < 0 or $k\ell - D < 0$.

5 - Energetics ~ 4 Pts

Q 13 - Compute the galilean power developed by the mechanical actions applied to the isolated system $\Sigma = \left\{S_1 + S_2 + S_3\right\}$.

<u>Remark:</u> Be careful to distinguish the galilean power developed by the external mechanical actions from the power developed by the internal actions.

Q 14 - Determine the galilean kinetic energy of $\Sigma = \{S_1 + S_2 + S_3\}$.

Figure 1: Scheme of the lower part of the landing gear.