Mechanics of Systems – Test n°3 Monday 11th april 2022 – 1h30 Authorised: Calculators and Personal formula sheets (3 pages + table of usual joints + table of inertia matrices). ## Study of a pinball strike mechanism Indicative scale: Part 1 (7 pts), Part 2 (13 pts) #### Presentation of the system The system under study is the «strike mechanism» of a pinball machine (Figure 1). Two of these electromechanical assemblies are present in a pinball machine, and permit a player to return the ball to the top of the board, to aim at targets and corridors in order to score maximum points. The system's actuator is an electro-magnet, which consists of an electrical coil and a plunger core (Figure 2). When the player pushes the button A (Figure 1a), the coil is powered. Because of the electromagnetic coupling, the plunger core is attracted into the actuator's body (Figure 2b). This induces the rotation of the beater through a connecting rod. The beater thus « strikes » the ball. Once the button A is released, the power goes off and the plunger core is pushed back to its initial position, by a compression spring. Figure 2 - Positions of the system: button A released (a) and button A pressed (b) ### Parametrization: The strike mechanism is modeled by the planar and spatial kinematic schemes in figure 3. Thereafter, the hypothesis of planar problem will be assumed for this problem. The model is composed of: - the pinball machine's housing S_0 , fixed to the ground, and its linked frame $R_0 = (0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ - the plunger core S_1 , and its linked frame $R_1 = (B, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$; S_1 is linked to the housing S_0 by a prismatic joint of direction $(A, \overrightarrow{z_{0,1}})$; parameter of the motion 1/0 is defined as: $$z = \overrightarrow{AB}.\overrightarrow{z_{0,1}}$$ - the connecting rod S_2 , and its linked frame $R_2 = (B, \overrightarrow{x_{1,2}}, \overrightarrow{y_2}, \overrightarrow{z_2})$; S_2 is linked to the plunger core S_1 by a revolute joint of axis $(B, \overrightarrow{x_{1,2}})$; parameter of the motion 2/1 is defined as: $$\theta = (\overrightarrow{y_1}, \overrightarrow{y_2})$$ - the beater S_3 , and its linked frame $R_3 = (0, \overrightarrow{x_{2,3}}, \overrightarrow{y_3}, \overrightarrow{z_3})$; S_3 is linked: - o firstly to the housing S_0 by a revolute joint of axis $(0, \overrightarrow{x_{0,3}})$, parameter of the motion 3/0 is defined as: $$\psi = (\overrightarrow{y_0}, \overrightarrow{y_3})$$ - o and secondly to the rod S_2 by a revolute joint of axis $(C, \overline{x_{2,3}})$, which is not parametered. Remark: this joint permits 2 constraint equations to be established, which will not be determined in the present study. - The system also includes a compression spring which enables the beater to return to its rest position. Figure 3 – Spatial and planar kinematic scheme of the strike mechanism. #### Part 1: Mass geometry of solid S3 #### **Hypotheses:** The beater S_3 (Figure 4) is composed of 4 homogeneous solids S_{31} , S_{32} , S_{33} and S_{34} , rigidly bound together: - the solid S_{31} is a half-cylinder, of mass m_{31} and has a centre of mass G_{31} , - the solid S_{32} is a triangular prism, of mass m_{32} and has a centre of mass G_{32} , - the solid S_{33} is assimilated to a full rod, of length L_{33} , mass m_{33} and has a centre of mass G_{33} , - the solid S_{34} is a rectangle parallelepiped, of mass m_{34} and has a centre of mass G_{34} . For the whole system $S_3 = \{S_{31} \cup S_{32} \cup S_{33} \cup S_{34}\}$, the centre of mass will be called G_3 and its mass m_3 . Points G_{31} , G_{32} , G_{33} and G_{34} are located with respect to point O (Figure 4c). Figure 4 - Volumic representation of the beater $S_3 = \{S_{31} \cup S_{32} \cup S_{33} \cup S_{34}\}$ Question 1.1 Determine the coordinates of G_3 , the centre of mass of solid S_3 , in the frame $R_3 = (0, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$, in terms of the geometric parameters of Figure 4c and of the masses m_{3i} (with $i \in \{1,2,3,4\}$). Question 1.2 When the system was designed, the point O - centre of the revolute joint between S_0 and S_3 - was placed such that G_3 belongs to the plane $(0, \overrightarrow{y_3}, \overrightarrow{z_3})$. Write the corresponding geometric condition and the associated equation. Question 1.3 Give, without calculation, the matrix of inertia of solid S_{33} , expressed in G_{33} in the frame $R_3 = (0, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$, in terms of L_{33} and m_{33} . Thereafter, the matrices of inertia of the sub-solids S_{31} , S_{32} and S_{34} will be expressed at M in the frame R_3 as follows, using Binet's notation: $\overline{\overline{I}}(M, S_{3i}) = \begin{bmatrix} A_i & -F_i & -E_i \\ -F_i & B_i & -D_i \\ -E_i & -D_i & C_i \end{bmatrix}_{R_2} \text{ with } i \in \{1, 2, 4\}$ Give without calculation (but with justification), and using Binet's notation, the form of $\overline{\overline{I}}(G_{31}, S_{31})$ of solid S_{31} at G_{31} in the frame of $R_3 = (O, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$, and then calculate $\overline{\overline{I}}(O, S_{31})$ of solid S_{31} at O in the same basis. Question 1.5 Give without calculation, and using Binet's notation, the form of $\overline{\overline{I}}(\mathbf{0}, S_{32})$ of solid S_{32} at O in the basis of $R_3 = (O, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$, as well as the form of $\overline{\overline{I}}(\mathbf{0}, S_{34})$ of solid S_{34} at O in the basis of $R_3 = (O, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$. Question 1.6 By using the results of previous questions, and the geometric parameters of Figure 4c, express the matrix of inertia $\overline{I}(0, S_3)$ of solid S_3 at 0 in the basis of $R_3 = (0, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$. ### Part 2: Kinetics and Dynamics #### **Assumptions:** - The results of part 1 remain valid, - The problem is considered as planar, - The frame $R_0 = (0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ is galilean with axis $\overrightarrow{x_0}$ vertical, - The action of gravity along the vertical axis $\overrightarrow{x_0}$ is neglected, except for the solid S_3 , - All joints are assumed to be perfect, - The position of the centre of mass G_3 of solid S_3 , mass M_3 , is defined by $\overrightarrow{OG_3} = y_G \overrightarrow{y_3}$. One will note A_3 the moment of inertia of solid S_3 around the axis $(0, \overline{x_{0,1,2,3}})$, expressed at point 0. - The linear compression spring, massless, positioned between the point B of the plunger core S_1 and the point A of the housing S_0 , is characterized by a constant stiffness k. It will be considered that the spring is relaxed when the plunger is in the released position ("out"). Thus defining \overrightarrow{AB} . $\overrightarrow{z_{0.1}} = z_0$. - The wrench of mechanical actions of the electro-magnet (linked to the housing S_0) on the plunger core S_1 presents the following form: $${F_{E/1}}_{B} = \left\{ \overrightarrow{R_{E/1}} = f(z) \overrightarrow{Z_{0,1}} \right\}_{B}$$ The constitutive law, linking the effort f to the plunger's position z is considered as known. The plunger core S_1 is assimilated to a solid of revolution, of mass m_1 , having a centre of mass G_1 , such as $\overrightarrow{G_1B} = d \overrightarrow{z_{0,1}}$, and the matrix of inertia $$\overline{\overline{I}}(G_1,S_1) = \begin{bmatrix} A_{S_1} & 0 & 0 \\ 0 & A_{S_1} & 0 \\ 0 & 0 & C_{S_1} \end{bmatrix}_{R_1}$$ - The mass of the connecting rod S_2 is negligible. - It will be admitted without justification that the wrenches of actions of S_3 on S_2 and of S_1 on S_2 can be reduced to sliding vectors of action line (BC) and sum $\overrightarrow{R_{1/2}} = -\overrightarrow{R_{3/2}} = F\overrightarrow{y_2}$. Question 2.1 Draw the graph of links and the change of basis diagrams. Question 2.2 Determine the wrench of mechanical actions of the compression spring at B on solid S_1 . Question 2.3 Determine the kinetic wrench of the beater S_3 in its motion with respect to R_0 , at point O. Question 2.4 Determine the dynamic wrench of the beater S_3 in its motion with respect to R_0 , at point O. Question 2.5 Determine the dynamic wrench of the plunger S_1 in its motion with respect to R_0 , at point B. Question 2.6 Establish the equation coming from the theorem of the dynamic sum, applied to S_1 , along $\overrightarrow{z_{0,1}}$. Question 2.7 Establish the equation coming from the theorem of the dynamic moment, applied to S_3 , at O, along $\overrightarrow{x_{0.1,2,3}}$.