

Mechanics of Systems – Test 1

Monday 9th December 2024 - 1h30 (10h15-11h45)

Personal 1,5-A4 page formula sheet + table of joints and calculators are authorised.

Marking scale for the 2 independent parts: part A: 15 marks; part B: 5 marks.

Part A: STATIC ANALYSIS of a harbour crane

(≈15 marks)

For most harbour cranes (Figures 1.1 and 1.2), it is interesting to minimise the phases when loads are lifted up. Once a load has been removed from a ship hold, the objective is therefore to translate it horizontally in order to reduce energy consumption.

Figure 1.1: Harbour cranes

OBJECTIVE OF THE ANALYSIS

Determine, at equilibrium, the forces exerted by the hydraulic actuators for a given load to be moved.

MODEL

The crane under consideration has a load carrying capacity of 50 tons and comprises (Figure 1.3):

- a turret assimilated to the **ground** $\underline{\mathbf{0}}$,
- a **boom** $\underline{\mathbf{1}}$ connected to the ground $\underline{\mathbf{0}}$ via a revolute joint (pin connection) of axis (E, \vec{y}) and motion parameter $\underline{\mathbf{1}}/\underline{\mathbf{0}}$ $\alpha = (\vec{x}_0, \vec{x}_1)$

and connected to the arm $\underline{\mathbf{2}}$ via a revolute joint of axis (B, \vec{y}) and motion parameter $\underline{\mathbf{2}}/\underline{\mathbf{1}}$ $\beta = (\vec{x}_1, \vec{x}_2)$.

The load is applied at point C at the extremity of $\operatorname{arm} \underline{2}$.

- a **rod** <u>3</u> that supports arm <u>2</u> and is connected to the ground <u>0</u> via a revolute joint of axis (D, \vec{y}) and motion parameter $\underline{3}/\underline{0}$ $\delta = (\vec{x}_0, \vec{x}_3)$

and connected to the arm $\underline{\mathbf{2}}$ via a revolute joint of axis (A, y). No parameter is introduced for this joint.

The motion of arm 2 is controlled by a hydraulic jack comprising:

- a **cylinder** $\underline{\mathbf{5}}$ connected to the ground $\underline{\mathbf{0}}$ via a revolute joint of axis $\left(F, \overrightarrow{y}\right)$ and motion parameter $\underline{\mathbf{5}}/\underline{\mathbf{0}}$ $\varphi = \left(\overrightarrow{x_0}, \overrightarrow{x_5}\right)$ and connected to **piston** $\underline{\mathbf{6}}$ via a prismatic joint (slider) of direction $\overrightarrow{x_5}$ and translational motion parameter $\underline{\mathbf{6}}/\underline{\mathbf{5}}$ λ , such that $\overrightarrow{FH} = \lambda \overrightarrow{x_5}$.
- the piston $\underline{6}$ of the jack is connected to boom $\underline{1}$ via a revolute joint of axis (H, \vec{y}) . No parameter is introduced for this joint.

HYPOTHESES

- The problem is **planar**.
- All the joints are perfect.
- The weights of the various parts of the crane are neglected compared with the load at point C.
- The whole system is in equilibrium.
- The downward vertical axis is denoted z_0 .

DATA

- The force F_c generated by the load carried by the arm 2 is known and the corresponding wrench at point C reads: $\{F_{load/2}\} = \begin{cases} F_c \vec{z}_0 \\ \vec{0} \end{cases}_C$
- The overall fluid force $\|\vec{F}_{Fluid/6}\|$ in the direction of the piston rod of jack $\underline{6}$ is the scalar unknown that has to be determined.

NOTATIONS

The mechanical actions of solid i $(i \in \{1, 2, ..., 6\})$ onto solid j $(j \in \{1, 2, ..., 6\}, j \neq i)$ will be represented by a wrench at point P (A, B, ..., H), and expressed in the coordinate system R $(R_1, R_2, ..., R_5)$ as:

$$\left\{ \begin{array}{l} \left\{ \mathbf{F}_{i/j} \right\} : \left\{ egin{aligned} ec{F}_{i/j} \ ec{\mathbf{M}}_{i/j}(P) \end{array}
ight\}_P = \left\{ \left(egin{aligned} X_{ij} \ Y_{ij} \ Z_{ij} \end{array}
ight)_R & \left(egin{aligned} L_{ij} \ M_{ij} \ N_{ij} \end{array}
ight)_R \end{array}
ight\}_P$$

QUESTIONS

- 11 Determine the total number of static unknowns for the complete mechanism.
- 12 Isolate rod 3.
 - •Develop the equilibrium equations at point D.
 - •Deduce the particular form of the external force wrenches exerted on the rod.
- 13 Isolate arm 2.
 - •Develop the static equilibrium equations at point A projected in the coordinate system R₀. Do not try to solve.

In the same way, the static analysis of the boom $\underline{1}$ and that of the system $\underline{5U6}$ make it possible to determine the various wrenches of mechanical actions. In particular, the following wrench is now supposed to be known (in terms of geometrical data and force F_c):

$$\{F_{1/6}\}: \left\{ \begin{pmatrix} X_{16} \\ - \\ 0 \end{pmatrix}_{R_5} \begin{pmatrix} - \\ 0 \\ - \end{pmatrix}_{R_5} \right\}_H$$

In order to determine the force $\vec{F}_{Fluid/6}$, one considers the isolated piston $\underline{\bf 6}$ of the actuator. The pressure p applied on the circular surface of radius r of piston $\underline{\bf 6}$ is considered uniform.

- 14 Determine the force wrench generated by the mechanical action of the fluid on the piston $\underline{\mathbf{6}}$ $\{F_{Fluid/6}\}$ at point F in terms of radius r and pressure p, knowing that the active surface of the piston is perpendicular to the piston rod $\underline{\mathbf{6}}$. Justify your reasoning.
- 15 Equilibrium of the piston 6.
 - •Develop the static equilibrium equations at point H.
 - •Calculate the oil pressure in the jack in terms of the force component X_{16} and radius r.
- 16 Determine the force wrench $\{F_{6/5}\}$. Conclude.

Part B: KINEMATICS

(≈5 marks)

The following study is based on the harbour crane analysed in part A (Statics). For the system description, please refer to the previous part.

The objectives are to determine constraint equations, velocity and acceleration vectors at points H, A and B of the arm $\underline{2}$.

Questions

- 21 Draw the graph of links of the mechanism.
- 22 Draw the associated change of basis diagrams.
- 23 Give and develop the constraint equation(s) associated with the closure by the non-parametered joint at H between 6 and 1, in terms of certain parameters and geometric data.
- 24 What is the nature of motion 5/6? Calculate the velocity and acceleration vectors at point H in its motion $\underline{\mathbf{6}}$ with respect to $\underline{\mathbf{5}}$. Express the result in terms of the translational parameter λ .
- 25 What is the trajectory of H with respect to $\underline{\mathbf{0}}$? Calculate the velocity and acceleration vectors of point H in its motion with respect to $\underline{\mathbf{0}}$.
- 26 Express the instant angular velocity vector for the motion of $\underline{3}$ with respect to $\underline{0}$.

Figure 1.2: Harbour crane model

Figure 1.3: Harbour crane model – coordinate systems and solid labels.

Geometrical data

$$\begin{aligned} \overrightarrow{FE} &= l_0 \overrightarrow{z_0} + d_0 \overrightarrow{x_0} \\ \overrightarrow{FD} &= -h_0 \overrightarrow{z_0} \\ \overrightarrow{DA} &= l_3 \overrightarrow{x_3} \\ \overrightarrow{AB} &= d_2 \overrightarrow{x_2} + h_2 \overrightarrow{z_2} \\ \overrightarrow{AC} &= l_2 \overrightarrow{x_2} \\ \overrightarrow{EH} &= d_1 \overrightarrow{x_1} \\ \overrightarrow{HB} &= l_1 \overrightarrow{x_1} \end{aligned}$$