Physics : Exam n ${ }^{\circ} 1$

Monday 15 ${ }^{\text {th }}$ October 2018
Duration : 1 h 30
Tentative Marking Scheme: exercise I : 13 points, exercise II : 7 points. Calculator, documents and phones are forbidden.

The subject comprises two independent exercises.

Errors in units may be penalized.

Numerical values of physical constants: $\quad \varepsilon_{0}=\frac{1}{36 \pi 10^{9}}$ SI units, $\mu_{0}=4 \pi 10^{-7}$ SI units
Divergence operator in Cartesian coordinates:

$$
\operatorname{div}(\vec{X})=\frac{\partial\left(X_{x}\right)}{\partial x}+\frac{\partial\left(X_{y}\right)}{\partial y}+\frac{\partial\left(X_{z}\right)}{\partial z}
$$

Gradient and divergence operators in spherical coordinates:

$$
\begin{aligned}
& \overrightarrow{\operatorname{grad}}(V)=\frac{\partial V}{\partial r} \overrightarrow{u_{r}}+\frac{1}{r} \frac{\partial V}{\partial \theta} \overrightarrow{u_{\theta}}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \varphi} \vec{u}_{\varphi} \\
& \operatorname{div}(\vec{X})=\frac{1}{r^{2} \sin \theta}\left(\frac{\partial\left(r^{2} \sin \theta X_{r}\right)}{\partial r}+\frac{\partial\left(r \sin \theta X_{\theta}\right)}{\partial \theta}+\frac{\partial\left(r X_{\varphi}\right)}{\partial \varphi}\right)
\end{aligned}
$$

Exercise I - Model of a thunderstorm cloud

When the weather is fine, water vapor goes up from the earth to the atmosphere to build up a cloud. Along with the water vapor there are also electrons that have been teared off from the ground. In our simplified model:

- The earth is plane and fills the whole space located in the region $z \leq 0$. The ground (located at $z=0$) bears a uniform and positive surface charge density σ;
- A cloud is represented by an object which is infinite in the x and y directions and which is located between the altitudes $z=H$ and $z=H+h$ (where h is the thickness of the cloud), and bears an inhomogeneous volume charge density $\rho(z)=a \cdot(z-H-h)$, where a is a constant.

1) What is the unit of a ? The charges in the cloud being negative, what is the sign of a ?
(2) Analyze rigorously the symmetries and invariances of the charge distribution with the help of a sketch and deduce from it the topography of the electric field \vec{E}.
2) We assume that $\vec{E}=\overrightarrow{0}$ for $\mathrm{z}>\mathrm{H}+\mathrm{h}$. Deduce the electric field in the cloud ($\mathrm{H}<\mathrm{z}<\mathrm{H}+\mathrm{h}$) by using a local relation (point-form equation). (Note: the polynomial obtained is the square of the sum or difference of two terms).
(4) Calculate the electric field below the cloud $(0<z<H)$, once again by using a local relation as well as boundary conditions if necessary.
3) Draw the graph of the norm of \vec{E} as a function of z for $0<z<H+h$.
4) We assume that $\vec{E}=\overrightarrow{0}$ for z <0. By applying rigorously Gauss' law in its integral form, deduce the charge Q on a surface S of the ground as a function of a, h and S.
5) What is the charge Q^{\prime} in a cylinder of cloud of axis Oz , section S and located between H and $\mathrm{H}+\mathrm{h}$? Comment.
6) Numerical application: $\mathrm{H}=0.5 \mathrm{~km}, \mathrm{~h}=1 \mathrm{~km}$. Let's assume that the maximum value for the norm of the electric field is the value triggering lightning in humid air, i.e. approximately $10^{6} \mathrm{~V} / \mathrm{m}$. Give the order of magnitude for the charge Q with $\mathrm{S}=100 \mathrm{~m}^{2}$.

Exercise II - Vector operators and Maxwell equations

The Japanese nuclear physicist Yukawa suggested in 1935 a simple formula to describe (in spherical coordinates) the electric field created by an hydrogen atom in its fundamental state $1 s$, modelled by a point charge $+e$ in the center (the proton) surrounded by a "cloud" of charge (with spherical symmetry) corresponding to the electron - e :
$\vec{E}(\mathrm{r})=\frac{e}{4 \pi \varepsilon_{0} r^{2}}\left(1+\frac{r}{a}\right) \exp \left(-\frac{r}{a}\right) \overrightarrow{u_{r}}$, where a is a positive constant.
A- Without calculations, what is the value of $\overrightarrow{\operatorname{rot}}(\vec{E})$ and why?
B- Give the mathematical equivalents of the function $\vec{E}(\mathrm{r})$ for $r \ll$ a and for $r \gg$ a.
$_{\text {C- From the electric field (not approximated) deduce the charge density } \rho(r) \text { of the electronic charges. }}$
D- From the electric field (not approximated) deduce the Yukawa potential $\mathrm{V}(\mathrm{r})$, assuming it tends toward 0 when r is very big with respect to a.

