

Mathematics Written Examination # 5

Duration: 1 hour 30 minutes. All documents and electronic devices are prohibited.

- No documents, no calculators, no cell phones or electronic devices allowed.
- Take a deep breath before starting (everything is going to be ok!) and read entirely the exam before starting.0.
- All exercises are independent, you can do them in the order that you'd like.
- Please start an exercise at the top of a page (for readability).
- Number single pages, or simply the booklets (copies doubles) if multiple: for example 1/3, 2/3, 3/3
- All your answers must be fully (but concisely) justified, unless noted otherwise.
- Redaction and presentation matter! For instance, write full sentences and make sure your 'x' and 'n' can be distinguished.
- Respecting all of the above is part of the exam grade (0.5 points). Provided rubric is indicative (changes may occur).

Exercise 1 (~ 5 points) Warm-ups

The following questions are independent. You are expected to provide some justification for those questions, especially for the True/False questions.

- 1. True or False: A polynomial $P \in \mathbb{R}[X]$ of degree four has either two inflection points or none.
- 2. True or False: the set $F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid \lim_{x \to +\infty} f(x) = 0 \}$ is a vector subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- 3. True or False: the family $\mathcal{F} = (X-1; X^2-1; (X-1)^2)$ is a basis of the vector space G defined by $G = \{ P \in \mathbb{R}_2[x] \mid P(1) = 0 \}.$
- 4. Find $a, b, c \in \mathbb{R}$ such that :

$$\begin{pmatrix} a & 1 & 0 \\ 2 & b & 1 \\ 1 & 1 & 3 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

5. Which of the following statements are valid?

(a)
$$\ln(t) = t - \frac{t^2}{2} + o(t^2)$$
 ×

(b)
$$e^t = 1 + t + \frac{t^2}{2} + o(t^2)$$

(c)
$$e^{1+t} \approx 1 + (1+t)$$
 (d) $\ln(t) \approx t$

(d)
$$\ln(t) \sim t$$

(e)
$$e^t \sim 1 + t - \frac{t^2}{2}$$
 x

(f)
$$\ln(1+t^2) = t^2 + o(t^3)$$
 $\sqrt{ }$

Exercise 2 (~ 7 points)

Let f be the function defined by :

$$f(x) = \begin{cases} 3 + 2x^2 \ln\left(1 + \frac{1}{x}\right) & \text{if } x > 0 \\ 3 & \text{if } x = 0 \end{cases}$$

1. Using Taylor Series Expansions, determine the limit of f at $+\infty$, and whether the curve of f has an asymptote or not at $+\infty$.

If that's the case, determine the equation of the asymptote and the relative positions of the curve and the asymptote near $+\infty$.

- 2. Show that f is differentiable at 0, and give the value of f'(0). (Note that $1 + \frac{1}{x} = \frac{x+1}{x}$.)
- 3. (a) For x > 0, calculate f'(x).
 - (b) Using the Mean Value Theorem, show that:

$$\forall t > 0, \ln(1+t) > \frac{t}{t+1}.$$

- (c) Deduce, with detailed reasoning, that f is a bijection from $I = [0, +\infty[$ to an interval J to be determined.
- (d) Study the differentiability of f^{-1} on J.
- 4. (a) Let $n \in \mathbb{N}$. Justify that from a certain rank n_0 to be determined, the equation $f(x) = \sqrt{n}$ has a unique solution (no need to calculate it). We denote this solution by x_n . Thus, a sequence $(x_n)_{n \ge n_0}$ is defined.
 - (b) Determine the monotonicity of the sequence $(x_n)_{n\geq n_0}$.
 - (c) Show that $x_n \sim \alpha n^{\beta}$ where α and β are real numbers to be determined.

Exercise 3 (~8 points)

In this problem, we are interested in the function f defined for all $x \in \mathbb{R}^*$ by

$$f(x) = \frac{x}{2\tanh(x/2)} = \frac{x \cdot \cosh(x/2)}{2\sinh(x/2)}.$$

We denote C_f as the graph of f.

- 1. Compute the second-order Taylor expansion of f at 0.
- 2. Deduce that f can be extended to a continuous and differentiable function at 0. We will still denote f as its extension.
- 3. Provide the equation of the tangent to the graph of f at 0. How is the graph of f positioned with respect to its tangent at 0 (in a small neighborhood of 0)?

We now admit that f is \mathcal{C}^{∞} on \mathbb{R} .

- 5. What is f''(0)?
- 6. What is the parity of f?
- 7. What can we deduce about f'''(0) and, more generally, about the successive derivatives of f at 0?
- 8. It is given that f'''(x) < 0 for all $x \in]0; +\infty[$. Determine, with justification, the sign of f'''(x) for $x \in]-\infty;0]$.
- 9. Let P_2 be the second-order Taylor polynomial (the osculating parabola) of f at zero. Using the previous question and Taylor-Lagrange, formula determine the sign of $f(x) P_2(x)$ on \mathbb{R}^* .
- 10. What can we deduce about $f^{(4)}(0)$? Justify your answer.

^{0.} Draw a cube next to your name on the first page once this is done.