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Exercise 1 (4 pts)

1. det(C) = det(A) × det(B). Since matrices A and B are triangular, their determinant equals the product of
their diagonal elements. Hence, det(C) = −6 × 1 = −6.

2. (a) ∣∣∣∣∣∣
a − 2 2 −1

2 a 2
2a 2a + 2 a + 1

∣∣∣∣∣∣ =
C1←C1−C3

∣∣∣∣∣∣
a − 1 2 −1

0 a 2
a − 1 2a + 2 a + 1

∣∣∣∣∣∣ = =
L3←L3−L1

(a − 1)

∣∣∣∣∣∣
1 2 −1
0 a 2
0 2a a + 2

∣∣∣∣∣∣
Then, expanding along the first column, det(Ma) = (a − 1)(a2 + 2a − 4a) = a(a − 1)(a − 2).

(b) Ma is invertible ⇐⇒ det(Ma) ̸= 0 ⇐⇒ a ∈ R \ {0; 1; 2}.
3. (a)

A ×

1
0
1

 =

2
0
2

 so f(u) = 2u with u ̸= 0⃗.

u is therefore an eigenvector of f associated with the eigenvalue λ = 2.
(b) Let γ be the third eigenvalue of A.

trace(A) = 6 = λ + µ + γ, hence γ = 3 and the characteristic polynomial of A is therefore
−(X − 1)(X − 2)(X − 3).

Exercise 2 (4.75 pts)

1. f is differentiable on R+, and for all x ⩾ 0, f ′(x) = −xe−x ⩽ 0, so f is decreasing on R+ . Furthermore,
f([0, 1]) = [f(1), f(0)] =

[ 2
e , 1

]
⊂ [0, 1] so the interval [0, 1] is indeed stable under f .

2. ∀ x ∈ R+, h′(x) = −xe−x − 1 ⩽ 0, and since h′ only vanishes at 0, it is therefore strictly decreasing and
continuous on R+. h thus defines a bijection from R+ to h(R+) =] lim

+∞
h, h(0)] =] − ∞, 1]. Thus, there exists

a unique real number α ⩾ 0 such that h(α) = 0, i.e., such that f(α) = α .
Moreover, h(1) = 2

e − 1 < 0 hence α < 1 .

3. Since f is decreasing on [0, 1], 0 < α < 1 =⇒ f(1) < f(α) < f(0) =⇒ 2
e < α < 1.

4. We have (f ◦ f)(α) = f(f(α)) = f(α) = α, so α is a fixed point of f ◦ f . Since it is assumed that f ◦ f has
only one fixed point on [0, +∞[, it must necessarily be α.

5. • First, since u0 ∈ [0, 1] and [0, 1] is stable under f , we can deduce that for all n ∈ N, un ∈ [0, 1] (and thus
(un) is bounded) .
• Next, since f is decreasing on [0, 1], we know that the sequence (un) is not monotonic but the sequences
(vn) = (u2n) and (wn) = (u2n+1) are both monotonic .
• Being bounded (as subsequences of (un)), the sequences (vn) and (wn) are therefore convergent , and
since vn+1 = (f ◦ f)(vn) and wn+1 = (f ◦ f)(wn), by the continuity of f ◦ f their limit must necessarily be
the unique fixed point of f ◦ f on [0, 1], i.e., α (from Part I) .
• Finally, since (u2n) and (u2n+1) both converge to α, we can deduce that (un) converges to α .



Exercise 3
Part I (3.75 pts)

1. 2n−1∑
k=n

(xk+1 − xk) =
2n−1∑
k=n

xk −
2n−1∑
k=n

xk =
2n∑

k=n+1
xk −

2n−1∑
k=n

xk = x2n − xn.

2. From property (P ), we have for all n ⩾ n0,

x2n − xn ⩾
2n−1∑
k=n

α

k
⩾

2n−1∑
k=n

α

2n − 1 .

Now,

2n−1∑
k=n

α

2n − 1 = (2n−1−n+1)× α

2n − 1 = αn

2n − 1 ⩾
αn

2n
. Hence, we have for all n ⩾ n0, x2n−xn ⩾

α

2 .

3. First, property (P ) implies that the sequence (xn) is increasing starting from rank n0 .
Thus, (xn) has a limit ℓ ∈ R ∪ {+∞} . However, if ℓ ∈ R, then lim

n→+∞
(x2n − xn) = ℓ − ℓ = 0, which is

impossible according to the inequality from the previous question .

Part II (7.5 pts)

1.
For x ∈ [0 , 1], f ′(x) = 1 − 2x. f is therefore strictly increasing on

[
0 ,

1
2

]
and strictly decreasing on

[
1
2 , 1

]
.

2.
Let n ∈ N, f

(
1

n + 1

)
− 1

n + 2 = 1
n + 1 − 1

(n + 1)2 − 1
n + 2 = [...] = −1

(n + 1)2(n + 2) ≤ 0

3.
We prove by induction on N that 0 < u0 <

1
n + 1 .

n = 0 : we have 0 < u0 = 1
2 < 1.

n = 1 : we have 0 < u1 = 1
4 <

1
2 .

n → n + 1 : Assume that for some n ∈ N∗, we have 0 < un <
1

n + 1 ≤ 1
2 (since n ≥ 1).

Since f is strictly increasing on

[
0 ,

1
2

]
, we have f(0) < f(un) < f

(
1

n + 1

)
.

From the previous question, we deduce that 0 < un+1 <
1

n + 2 .

By induction, we have 0 < un <
1

n + 1 for all n in N.
Note : We need n ∈ N∗ to prove the induction, so we must initialize the induction proof at n = 1.

4. Let n ∈ N, vn+1 − vn = (n + 1)un+1 − nun = (n + 1)(un − u2
n) − nun = un(1 − (n + 1)un).

From question 3, un > 0 and 1 − (n + 1)un > 0. Therefore, vn+1 − vn > 0.
5. From question 3, for all n ∈ N, 0 < vn <

n

n + 1 < 1. The sequence (vn) is therefore increasing, bounded

above by 1, and hence (vn) is convergent to ℓ ∈ [0 , 1].
6.

v1 = u1 = 1
4 > 0. And (vn) is increasing, so ℓ ≥ 1

4 > 0.

7. Using the computation from question 4 :
For all n ∈ N, wn = n(vn+1 − vn) = n(un(1 − (n + 1)un)) = vn(1 − vn − un).
From question 3, lim

n→+∞
un = 0 (by bounding) , and from question 5, lim

n→+∞
un = ℓ.

Thus, we have lim
n→+∞

wn = ℓ(1 − ℓ).

8. Assume by contradiction that ℓ ̸= 1. We have already shown that ℓ ̸= 0. Hence, we deduce that ℓ′ =
ℓ(1 − ℓ) > 0.

We have lim
n→+∞

wn = ℓ′. By the definition of the limit, for sufficiently large n, wn ∈
[
ℓ′ − 1

2ℓ′ , ℓ′ + 1
2ℓ′

]
.

Taking α = ℓ′

2 , we have wn ≥ α for sufficiently large n.

Since wn = n(vn+1 − vn), there exists n0 such that for all n ≥ n0, vn+1 − vn ≥ α

n
.

From part I, lim
n→+∞

vn = +∞, which contradicts question 3.

Thus, we deduce that ℓ = 1. Finally, un = vn

n
∼

n→+∞

1
n
.


