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Exercise 1 (4 pts)

1. det(C) = det(A) x det(B). Since matrices A and B are triangular, their determinant equals the product of
their diagonal elements. Hence, det(C') = —6 x 1 = —6.

a—2 2 —1 a—1 2 1 1 2 -1
2 a 2 = 0 a 2 | = = (a—1)|0 a 2
2 2a+2 a+1] DTN i1 2042 1] Tetleth 0 2 a+2

Then, expanding along the first column, det(M,) = (a — 1)(a® + 2a — 4a) = a(a — 1)(a — 2).

(b) | M, is invertible <= det(M,) #0 < a € R\ {0;1;2}.

3. (a) 1 2
Ax 0] =[0] so f(u) =2u with u # 0.
1 2

u is therefore an eigenvector of f associated with the eigenvalue A = 2.

(b) | Let v be the third eigenvalue of A.
trace(A) = 6 = A+ u + -, hence v = 3 and the characteristic polynomial of A is therefore
—(X -1)(X —-2)(X -3).

Exercise 2 (4.75 pts)

L. f is differentiable on R, and for all z > 0, f'(z) = —re™™ < 0, so f is decreasing on R, . Furthermore,
f([0,1]) = [f(1), £(0)] = [2,1] C [0,1] so the interval [0,1] is indeed stable under f .
2. Vo e Ry, h'(z) = —re™™ — 1 < 0, and since h’ only vanishes at 0, it is therefore strictly decreasing and
continuous on R . h thus defines a bijection from Ry to h(Ry) =] Em h, h(0)] =] — 00, 1]. Thus, there exists
(o)

a unique real number « > 0 such that h(a) = 0, i.e., such that f(a) =« .
Moreover, h(1) = 2 —1 < 0 hence v < 1 .

3. Since f is decreasing on [0,1], 0 < a <1 = f(1) < f(a) < f(0) = 2 <a <l

4. We have (f o f)(a) = f(f(a)) = f(a) = a, so « is a fixed point of f o f. Since it is assumed that f o f has
only one fixed point on [0, 4o00[, it must necessarily be «.

5. o First, since ug € [0,1] and [0, 1] is stable under f, we can deduce that for all n € N, u,, € [0,1] (and thus

(uy,) is bounded) .

e Next, since f is decreasing on [0, 1], we know that the sequence (u,) is not monotonic but the sequences
(vn) = (u2n) and (w,) = (u2n+1) are both monotonic .

e Being bounded (as subsequences of (u,)), the sequences (v,) and (w,) are therefore convergent , and
since vp4+1 = (f o f)(v,) and w1 = (f o f)(wy), by the continuity of f o f their limit must necessarily be
the unique fixed point of f o f on [0,1], i.e., a (from Part I) .

e Finally, since (ug,) and (u2,+1) both converge to o, we can deduce that (u,) converges to « .




Exercise 3
Part I (3.75 pts)

1. 2n—1 2n—1 2n—1 2n—1
2 (@ =)= 3 o= ) o= 5 2 = an = .
k=n k=n-+1
2. From property (P), we have for all n > ny,
2n—1 a 2n—1 a
x > —
2n = En Z k 2n —1
k=n =n
i e an an e
Now, (2n—1—n+1)x = > —. Hence, we have for all n > ng, xo,—x, > —.
Z n—l e I T o1 7 0 T =g
3. First, property (P) implies that the sequence (z,,) is increasing starting from rank ng .

Thus, (x,) has a limit £ € RU {+o0} . However, if £ € R, then lirf (xon — xn) = £ — £ = 0, which is

n—-+oo
impossible according to the inequality from the previous question .

Part II (7.5 pts)

1. 1 1
For x € [0,1], f'(x) = 1 —2z. f is therefore strictly increasing on [0 , 2} and strictly decreasing on {2 , 1] .
2. 1 1 1 1 1 -1
Let n € N, — = - — =[l.]=+———-<0
en f(n—l—l) n+2 n+l (m+1)2 n+2 L] (n+1)2(n+2) —
3. 1
We prove by induction on N that 0 < ug < T
1
n:O:wehave()<u0:§<1.
1 1
=1: h =-< -,
n we have 0 < u; 1 < 5 ) )
n — n+ 1 : Assume that for some n € N*, we have 0 < u,, 1 < 3 (since n > 1).
1 1
Since f is strictly increasing on [0 , 2} , we have f(0) < f(u,) < f < n 1>
n
1
From the previous question, we deduce that 0 < u,41 < TS
n
1
By induction, we have 0 < u,, < 1 for all n in N.
n
Note : We need n € N* to prove the induction, so we must initialize the induction proof at n = 1.
4. Let n €N, vpy1 — vp = (04 Dtpi1 — ny = (0 + 1) (up — u2) — nuy = un (1 — (0 + Duy,).
From question 3, u,, > 0 and 1 — (n 4+ 1)u, > 0. Therefore, v,41 — v, > 0.
5. From question 3, for alln € N, 0 < v, < % < 1. The sequence (vy,) is therefore increasing, bounded
n
above by 1, and hence (v,,) is convergent to £ € [0, 1].
6. 1 1
v =Ul = 1 > 0. And (v,) is increasing, so ¢ > 1 > 0.
7. Using the computation from question 4 :
For all n € N, wy, = n(vp41 — vp) = n(un(l — (n+ Duy)) = v, (1 — vy — wy).
From question 3, lim wu, =0 (by bounding) , and from question 5, lim w, = ¢.
n—-+oo n—-+00
Thus, we have lim w, = ¢(1 —¢).
n—-+oo
8. Assume by contradiction that ¢ # 1. We have already shown that ¢ # 0. Hence, we deduce that ¢ =

(1—0)> 0.
1 1
We have lim w, = ¢. By the definition of the limit, for sufficiently large n, w, € [¢ — 56’ A 55’ )

n—-+oo
/
Taking a = —, we have w,, > « for sufficiently large n.
. . e
Since wy, = n(vy4+1 — vy ), there exists ng such that for all n > ng, vy — v, > —.
n
From part I, lim v, = 400, which contradicts question 3.
n—-+oo
v 1
Thus, we deduce that ¢ = 1. Finally, u, = — ~ —.

n n—4+oco n




