Exercise 1 (4 pts)

1.	$det(C) = det(A) \times det(B)$. Since matrices A and B are triangular, their determinant equals the product of their diagonal elements. Hence, $det(C) = -6 \times 1 = -6$.	
2. (a)	$\begin{vmatrix} a-2 & 2 & -1 \\ 2 & a & 2 \\ 2a & 2a+2 & a+1 \end{vmatrix} \xrightarrow{e} C_1 \leftarrow C_1 - C_3 \begin{vmatrix} a-1 & 2 & -1 \\ 0 & a & 2 \\ a-1 & 2a+2 & a+1 \end{vmatrix} = \underset{L_3 \leftarrow L_3 - L_1}{=} (a-1) \begin{vmatrix} 1 & 2 & -1 \\ 0 & a & 2 \\ 0 & 2a & a+2 \end{vmatrix}$	
	Then, expanding along the first column, $det(M_a) = (a-1)(a^2+2a-4a) = a(a-1)(a-2).$	
(b)	M_a is invertible $\iff \det(M_a) \neq 0 \iff a \in \mathbb{R} \setminus \{0; 1; 2\}.$	
3. (a)	$A \times \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 2\\0\\2 \end{pmatrix} \text{ so } f(u) = 2u \text{ with } u \neq \vec{0}.$ u is therefore an eigenvector of f associated with the eigenvalue $\lambda = 2$.	
(b)	Let γ be the third eigenvalue of A .	
	trace(A) = 6 = $\lambda + \mu + \gamma$, hence $\gamma = 3$ and the characteristic polynomial of A is therefore $-(X-1)(X-2)(X-3)$.	

Exercise 2 (4.75 pts)

1.	f is differentiable on \mathbb{R}_+ , and for all $x \ge 0$, $f'(x) = -xe^{-x} \le 0$, so f is decreasing on \mathbb{R}_+ . Furthermore, $f([0,1]) = [f(1), f(0)] = \begin{bmatrix} 2\\ e \end{bmatrix} \subset [0,1]$ so the interval $[0,1]$ is indeed stable under f .	
2.	$\forall x \in \mathbb{R}_+, h'(x) = -xe^{-x} - 1 \leq 0$, and since h' only vanishes at 0, it is therefore strictly decreasing and continuous on \mathbb{R}_+ . h thus defines a bijection from \mathbb{R}_+ to $h(\mathbb{R}_+) = \lim_{n \to \infty} h, h(0) = -\infty, 1$. Thus, there exists	
	a unique real number $\alpha \ge 0$ such that $h(\alpha) = 0$, i.e., such that $f(\alpha) = \alpha$. Moreover, $h(1) = \frac{2}{e} - 1 < 0$ hence $\alpha < 1$.	
3.	Since f is decreasing on [0,1], $0 < \alpha < 1 \implies f(1) < f(\alpha) < f(0) \implies \frac{2}{e} < \alpha < 1.$	
4.	We have $(f \circ f)(\alpha) = f(f(\alpha)) = f(\alpha) = \alpha$, so α is a fixed point of $f \circ f$. Since it is assumed that $f \circ f$ has only one fixed point on $[0, +\infty[$, it must necessarily be α .	
5.	 First, since u₀ ∈ [0, 1] and [0, 1] is stable under f, we can deduce that for all n ∈ N, u_n ∈ [0, 1] (and thus (u_n) is bounded). Next, since f is decreasing on [0, 1], we know that the sequence (u_n) is not monotonic but the sequences (v_n) = (u_{2n}) and (w_n) = (u_{2n+1}) are both monotonic. Being bounded (as subsequences of (u_n)), the sequences (v_n) and (w_n) are therefore convergent, and since v_{n+1} = (f ∘ f)(v_n) and w_{n+1} = (f ∘ f)(w_n), by the continuity of f ∘ f their limit must necessarily be the unique fixed point of f ∘ f on [0, 1], i.e., α (from Part I). Finally, since (u_{2n}) and (u_{2n+1}) both converge to α, we can deduce that (u_n) converges to α. 	

Exercise 3 Part I (3.75 pts)

$$\begin{array}{|c|c|c|c|c|}\hline 1. & \sum_{k=n}^{2n-1} (x_{k+1} - x_k) = \sum_{k=n}^{2n-1} x_k - \sum_{k=n}^{2n-1} x_k = \sum_{k=n+1}^{2n-1} x_k - \sum_{k=n}^{2n-1} x_k = x_{2n} - x_n. \\ \hline 2. & \text{From property } (P), \text{ we have for all } n \ge n_0, \\ & x_{2n} - x_n \ge \sum_{k=n}^{2n-1} \frac{\alpha}{k} \ge \sum_{k=n}^{2n-1} \frac{\alpha}{2n-1}. \\ & \text{Now, } \sum_{k=n}^{2n-1} \frac{\alpha}{2n-1} = (2n-1-n+1) \times \frac{\alpha}{2n-1} = \frac{\alpha n}{2n-1} \ge \frac{\alpha n}{2n}. \text{ Hence, we have for all } n \ge n_0, \quad x_{2n} - x_n \ge \frac{\alpha}{2}. \\ \hline 3. & \text{First, property } (P) \text{ implies that the sequence } (x_n) \text{ is increasing starting from rank } n_0. \\ & \text{Thus, } (x_n) \text{ has a limit } \ell \in \mathbb{R} \cup \{+\infty\} . \text{ However, if } \ell \in \mathbb{R}, \text{ then } \lim_{n \to +\infty} (x_{2n} - x_n) = \ell - \ell = 0, \text{ which is impossible according to the inequality from the previous question .} \end{array}$$

Part II (7.5 pts)

1.	For $x \in [0, 1]$, $f'(x) = 1 - 2x$. f is therefore strictly increasing on $\left[0, \frac{1}{2}\right]$ and strictly decreasing on $\left[\frac{1}{2}, 1\right]$.	
2.	Let $n \in \mathbb{N}$, $f\left(\frac{1}{n+1}\right) - \frac{1}{n+2} = \frac{1}{n+1} - \frac{1}{(n+1)^2} - \frac{1}{n+2} = [\dots] = \frac{-1}{(n+1)^2(n+2)} \le 0$	
3.	We prove by induction on \mathbb{N} that $0 < u_0 < \frac{1}{n+1}$.	
	<u>$n = 0$</u> : we have $0 < u_0 = \frac{1}{2} < 1$.	
	<u>$n = 1$</u> : we have $0 < u_1 = \frac{1}{4} < \frac{1}{2}$.	
	$\underline{n \to n+1}$: Assume that for some $n \in \mathbb{N}^*$, we have $0 < u_n < \frac{1}{n+1} \leq \frac{1}{2}$ (since $n \geq 1$).	
	Since f is strictly increasing on $\left[0, \frac{1}{2}\right]$, we have $f(0) < f(u_n) < f\left(\frac{1}{n+1}\right)$.	
	From the previous question, we deduce that $0 < u_{n+1} < \frac{1}{n+2}$.	
	By induction, we have $0 < u_n < \frac{1}{n+1}$ for all n in \mathbb{N} .	
	Note : We need $n \in \mathbb{N}^*$ to prove the induction, so we must initialize the induction proof at $n = 1$.	
4.	Let $n \in \mathbb{N}$, $v_{n+1} - v_n = (n+1)u_{n+1} - nu_n = (n+1)(u_n - u_n^2) - nu_n = u_n(1 - (n+1)u_n)$. From question 3, $u_n > 0$ and $1 - (n+1)u_n > 0$. Therefore, $v_{n+1} - v_n > 0$.	
5.	From question 3, for all $n \in \mathbb{N}$, $0 < v_n < \frac{n}{n+1} < 1$. The sequence (v_n) is therefore increasing, bounded	
	above by 1, and hence (v_n) is convergent to $\ell \in [0, 1]$.	
6.	$v_1 = u_1 = \frac{1}{4} > 0$. And (v_n) is increasing, so $\ell \ge \frac{1}{4} > 0$.	
7.	Using the computation from question 4 :	
	For all $n \in \mathbb{N}$, $w_n = n(v_{n+1} - v_n) = n(u_n(1 - (n+1)u_n)) = v_n(1 - v_n - u_n)$. From question 3 $\lim_{n \to \infty} u_n = 0$ (by bounding) and from question 5 $\lim_{n \to \infty} u_n = \ell$	
	Thus we have $\lim_{n \to +\infty} u_n = \ell(1, \ell)$	
	1 nus, we have $\lim_{n \to +\infty} w_n - \ell(1-\ell)$.	
8.	Assume by contradiction that $\ell \neq 1$. We have already shown that $\ell \neq 0$. Hence, we deduce that $\ell' = \ell(1-\ell) > 0$.	
	We have $\lim_{\substack{n \to +\infty \\ \ell'}} w_n = \ell'$. By the definition of the limit, for sufficiently large $n, w_n \in \left[\ell' - \frac{1}{2}\ell', \ell' + \frac{1}{2}\ell'\right]$.	
	Taking $\alpha = \frac{\ell'}{2}$, we have $w_n \ge \alpha$ for sufficiently large n .	
	Since $w_n = n(v_{n+1} - v_n)$, there exists n_0 such that for all $n \ge n_0$, $v_{n+1} - v_n \ge \frac{\alpha}{n}$.	
	From part I, $\lim_{n \to +\infty} v_n = +\infty$, which contradicts question 3.	
	Thus, we deduce that $\ell = 1$. Finally, $u_n = \frac{v_n}{n} \underset{n \to +\infty}{\sim} \frac{1}{n}$.	