

Mathematics Written Examination # 6

Duration: 3 hours. All documents and electronic devices are prohibited.

- No documents, no calculators, no cell phones or electronic devices allowed.
- Take a deep breath before starting (everything is going to be ok!) and read entirely the exam before starting.⁰.
- All exercises are independent, you can do them in the order that you'd like.
- Please start an exercise at the top of a page (for readability).
- Number single pages, or simply the booklets (copies doubles) if multiple: for example 1/3, 2/3, 3/3
- All your answers must be fully (but concisely) justified, unless noted otherwise.
- Redaction and presentation matter! For instance, write full sentences and make sure your 'x' and 'n' can be distinguished.
- Respecting all of the above is part of the exam grade (0.5 points). Provided rubric is indicative (changes may occur).

Exercise 1 (~ 1 points) Let f be the function defined on $(0, +\infty)$ by $f(x) = -(x+2)e^{-\frac{1}{x}} + 2$.

- 1. Determine the real numbers a, b, and c such that $f(x) = ax + b + \frac{c}{x} + o\left(\frac{1}{x}\right)$.
- 2. Interpret graphically in terms of asymptote and relative position.

Exercise 2 (~ 2 points)

We consider the function f defined on $I = \left[0, \frac{\pi}{2}\right]$ by $f(x) = \cos x + \sin x$.

- 1. Study the variations of f on I.
- 2. (a) Let x be a real number in the interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right]$. Write the Taylor-Lagrange formula for f of order n=3 on the interval $J=\left[\frac{\pi}{4}, x\right]$ to express f(x).
 - (b) Let $x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right]$. Bound the error made when using the polynomial of $\mathbb{R}_3[X]$ from the previous formula as an approximate value of f(x) when $\left|x \frac{\pi}{4}\right| < \frac{1}{10}$.

 Is this approximate value an overestimate or an underestimate?

Exercise 3 (~ 5 points)

We define the function f on \mathbb{R} by :

$$f(x) = \begin{cases} 1 + x \frac{\operatorname{ch} x - 1}{\operatorname{sh} x} & \text{if } x \in \mathbb{R}^{k} \\ 1 & \text{if } x = 0 \end{cases}.$$

We recall the following relation:

$$\forall x \in \mathbb{R}, \ (\operatorname{ch} x)^2 - (\operatorname{sh} x)^2 = 1.$$

Let C_f be the representative curve of f.

- 1. Preliminary: Calculate the Taylor series expansion to order 3 at zero for $\varphi: x \longmapsto \frac{1-x}{1+x}$.
- 2. (a) Calculate the Taylor series expansion of order 2 at zero for the function f.
 - (b) What properties of f and its graphical representation C_f near zero can be deduced?
- 3. (a) Show that, on \mathbb{R}^* , the function f is differentiable and that its derivative has the same sign as $\operatorname{sh}(x) + x$.
 - (b) Establish the variations of f on \mathbb{R} . (The limits at $-\infty$ and $+\infty$ are not required.)
- 4. (a) Determine an equivalent of f at $+\infty$ of the form $f(x) \sim mx^p$ where m and p are two real numbers to be determined.
 - (b) Can we deduce the existence of an asymptote to the curve C_f near $+\infty$ without additional calculations?
- 5. (a) Express $\alpha(x) = \frac{\operatorname{ch} x 1}{\operatorname{sh} x}$ as a function of $s = e^{-x}$. Then perform the Taylor series expansion to order 1 at zero for this expression in the variable s.
 - (b) Show that there exist three real numbers a, b, and c such that $f(x) = ax + b + cxe^{-x} + o(xe^{-x})$.
- 6. (a) What can be deduced for the curve C_f near $+\infty$?
 - (b) Can anything be deduced from the previous question for the curve C_f near $-\infty$?

^{0.} Replace "car" by "bicycle" on the last instruction of this exam.

Exercise 4 (~ 6 points)

We consider the \mathbb{R} -vector space $\mathbb{R}_2[X]$. We define the application on $\mathbb{R}_2[X]$ by :

$$f(P) = (X+1).P' + P$$
.

(where P' is the derivative polynomial of P).

Let \mathcal{B}_0 be the canonical basis of $\mathbb{R}_2[X]$.

- 1. Show that f is an endomorphism of $\mathbb{R}_2[X]$.
- 2. Justify that the matrix A of f in \mathcal{B}_0 is written as follows:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$

- 3. Without additional calculations, determine using this matrix whether f is bijective or not.
- 4. Let the polynomials R_0 , R_1 , R_2 be defined by:

$$R_0 = 1$$
, $R_1 = X + 1$ and $R_2 = (X + 1)^2$

Show that $\mathcal{B}_1 = (R_0, R_1, R_2)$ is a basis of $\mathbb{R}_2[X]$.

- 5. (a) Determine the matrix D of f in the basis \mathcal{B}_1 .
 - (b) Briefly explain another method to determine this same matrix D. (No calculations are expected.)
- 6. Determine P, the transition matrix from the basis \mathcal{B}_0 to the basis \mathcal{B}_1 , as well as Q, the transition matrix from the basis \mathcal{B}_1 to the basis \mathcal{B}_0 .
- 7. (a) Give D^{-1} .
 - (b) Write A^{-1} in terms of D^{-1} , P, and Q.
 - (c) Let n be a natural number. Deduce from the previous question a simplified expression of $(A^{-1})^n$ in terms of D^{-1} , P, and Q.
- 8. Using some of the previous questions, answer the following:
 - (a) Let $T \in \mathbb{R}_2[X]$ be fixed. How many solutions does the following differential equation (E_1) have in $\mathbb{R}_2[X]$:

$$(E_1)$$
 $(x+1)y'(x) + y(x) = T(x)$?

(b) Determine, if there are any, all the solutions in $\mathbb{R}_2[X]$ of the following differential equation (E_2) :

3

$$(E_2) (x+1)y'(x) + y(x) = 6 + 6x$$

Exercise 5 (~ 6 points)

Part A: in \mathbb{R}^3

Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ be the endormorphism determined by the following matrix A in the canonical basis \mathcal{B} of \mathbb{R}^3 :

$$A = \begin{pmatrix} 4 & 0 & 0 \\ 2 & 3 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

- 1. Determine the set of all vectors $u \in \mathbb{R}^3$ satisfying f(u) = 4u.
- 2. Find a basis \mathcal{B}' of \mathbb{R}^3 such that the matrix of f with respect to \mathcal{B}' is $D = [f]_{\mathcal{B}'} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
- 3. What is the relationship between A, D and the transition matrix $[B']_B$?
- 4. Let Y be a matrix of $\mathcal{M}_3(\mathbb{R})$ such that $Y^2 = D$.
 - (a) Show that YD = DY.
 - (b) Deduce that Y must be a diagonal matrix.
 - (c) Find all the possible Y satisfying $Y^2 = D$.
- 5. Using previous questions, explain how one can find all matrices $X \in \mathcal{M}_3(\mathbb{R})$ satisfying $X^2 = A$ (you are not asked to determine all such matrices).

Part B: on functions

Let $\varphi : \mathcal{F}(\mathbb{R}, \mathbb{R}) \to \mathcal{F}(\mathbb{R}, \mathbb{R})$ defined by $\varphi(f)(x) = f(x + \ln(4))$.

Let $G = \text{Span}(\mathcal{B})$ with $\mathcal{B} = (\text{ch}; \text{sh})$.

- 6. Prove that \mathcal{B} is a basis of G.
- 7. Show that $\varphi(\operatorname{ch}) \in G$ and $\varphi(\operatorname{sh}) \in G$ so we can consider the restricted endomorphism $\varphi: G \to G$.
- 8. Determine the matrix of φ with respect to the basis \mathcal{B} .
- 9. Let $f_1, f_2 \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ defined for all $x \in \mathbb{R}$ by $f_1(x) = e^x$ and $f_2(x) = e^{-x}$. Show that $\mathcal{B}' = (f_1; f_2)$ is a basis of G, and determine $P = [\mathcal{B}']_{\mathcal{B}}$.
- 10. Determine the matrix A' of φ with respect to \mathcal{B}' .
- 11. Find all matrices $X \in \mathcal{M}_2(\mathbb{R})$ satisfying $X^2 = A'$.
- 12. Take the only such X with only positive entries and show that it corresponds to the matrix (in \mathcal{B}') of the linear application $\psi: G \to G$ defined by $\psi(f)(x) = f(x + \ln(2))$. Why could we expect such a result?

^{0.} Draw a car next to your name on the first page once this is done.