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Not only your results, but above all your ability to justify them clearly and analyze them critically will be accounted for. All
results must be written as literal expressions involving only the data provided. You are also reminded to take care with the

spelling and presentation.
Documents not allowed. Calculators in exam mode allowed. The grading scale is only indicative.

The 3 exercises are independent.

Exercise 1: Thrill rides (12 points)

This exercise is made of two independent parts (questions 1 to 6 independent from questions 7 to 10).

We consider the roller coaster depicted in figure 1. A spring of stiffness k and no-load length xo, placed along the Ox
direction, is used to propel a cart of mass m, considered as a point mass, that rolls on rails along a circuit containing a
bump. The upper portion of the rail between A and C can be modeled as a circle of radius R;.

The frame origin O is located at the fixed extremity of the spring.

In order to set the cart in motion, the spring is compressed until its length is x; (start position), with x; < xo. To do
so, an operator applies a force F, opposed to the spring restoring force Fx.
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Figure 1: The Devil’s Ride

For questions 1 and 2, section [OA] is along axis (Ox) with ii, the unit vector.
The cart moves without friction all along its trajectory.

1. Draw a free-body diagram representing the forces applied on the cart at the start of the ride, just after the spring
was released, with the spring still compressed in its starting position x;. Compute the work Wp that the operator had
to provide in order to compress the spring from its rest position xy to its start position x;. Comment on the sign of this
work.

The spring is suddenly released and propels the cart. The spring goes back to its length at rest xo without additional
spring extension: the cart is released from the spring as soon as the spring reaches xj.

2. Determine the cart velocity v4 at point A, as a function of k, m, xo and x;.

The cart reaches now the “Crazy Bump” ABC. We recall that the upper part of the bump can be considered as a circle
of radius R;.

In order to describe the cart trajectory on the bump, we consider a new cylindrical frame (O', i@y, ilg, i7z), where O’ is
the center of the circle, 6 = 0 when the cart is on B, and 7, is the unit vector perpendicular to the paper (see figure 2 on
the next page).

3. Determine the work Wy of the cart’s weight as it goes from point A to point I, parameterized by the angle 6.
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Figure 2: The Crazy Bump

4. Determine the magnitude of the normal reaction force of the rails N as the cart is on a point [ located on the circular
part of the bump, as a function of m, 0, v, g and R;.

5. Under which condition will the cart take off and leave the rails?

6. Knowing that angle 6 is in [-7; 7], give the maximum velocity v max that the cart must not exceed in order to stay
on the rails during the bump. Give the literal expression of the compression (x; — Xo) to which this corresponds, as well
as the expression of the maximum force (F,4x) that the operator should apply.

The following questions are independent of the previous ones.

After this not-so-scary “Devil's ride”, our passengers try a second thrill ride, represented in figure 3. This one is a
pendulum moving around an axis perpendicular to the plane of the scheme. It contains a counterweight located at a
distance R, from the axis of rotation, of mass m; and moment of inertia /, = mzRg. The cabin where the passengers
are is located at a distance R; from the axis of rotation, with a mass m; and moment of inertia J; = mIRf. The cabin
is placed at an initial angle 6y by a motor, and then released without initial velocity. The whole system oscillates at its
natural frequency wy.

The movement of this pendulum is parameterized by the angle 6 represented on figure 3.
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Figure 3: The Devil’s Pendulum

7. Considering that the angle @ remains small in order for this ride not to be too scary, and that the pendulum oscillates
without friction, establish the equation of motion of this pendulum and determine its natural angular frequency wy.
The weight of the bar between the two masses is neglected and the equation should involve only m,, m», Ry, Rz, g and
6. Comment on the case where myR, > mR.

8. Assuming my R, < myR), give the expression of 0(1).
For simplicity, we consider now that ) = R, = R.

9. Noting wqy the pendulum natural angular frequency without counterweight, determine the ratio %%0 What is the
interest of the counterweight?.

10. Numerical application: determine the ratio :—‘,':f for R =5 m so that wg = 1 rad.s™!, with g =9.81 m.s™2.
11. Bonus: if the total mass of the passengers is 750 kg, how can one ensure that the period of oscillations does not

depend on the number of passengers?




Exercise 2: Quartz, an excellent resonator (12 points)

Quartz is a piezoelectric crystalline mineral: it deforms when submitted to a voltage difference, and conversely if it is
deformed mechanically a voltage difference appears between its faces. A quartz crystal undergoes mechanical vibra-
tions at a very specific frequency. The accuracy of the resonant frequency, associated to electric coupling thanks to the
piezoelectric effect, makes quartz a useful component for designing resonant electric circuits with a high quality factor,
and thus very accurate oscillators.

Part 1: modeling a quartz resonator

We consider a quartz crystal shaped as a thin disk. The circular base has a diameter d = 1 cm with a crystal thickness
e equal to 0.2 mm. Metal electrodes (usually made in gold) are placed on each circular face of the quartz; they are referred
to as connection electrodes. This results in a plate capacitor structure as show in the figure below.
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Figure 4: Electric scheme of a quartz under a voltage difference V(2).

From a mechanical point of view, when the piezoelectric system is submitted to an alternating sinusoidal voltage
difference V (1), it will undergo mechanical sinusoidal oscillations, due to a force proportional to the voltage difference.

We set V() = Vp cos(w?). The model is the following: an element of mass m of the piezoelectric body, placed at a distance
x from its resting position (see figure 5), is subjected to the following forces, all along with axis (Ox):

- arestoring elastic-type force F = —kxii, (with k > 0), that originates from the material stiffness,
— friction effects resulting in a force assumed to be proportional to the velocity f= —h%’f iy,
- aforce resulting from the piezoelectric effect Fpp = BV (t)iiy (with > 0),

- the weight of the element, considered here to be negligible.

ﬂi X

>
e

Figure 5: Small element of mass m located at x

1. The motion is assumed to be restricted to the (Ox) axis. Apply Newton’s second law to the element of mass m in
the laboratory frame (supposed to be Galilean) to determine the differential equation satisfied by x(z). Which term
corresponds to the electromechanical coupling?



From an electrical point of view, we denote g(r) the total charge carried by the plate capacitor (see Fig. 4). This
charge originates from 2 contributions:

- aregular capacitance charge g (?) issued from the metal/crystal/metal capacitor. In the following we will de-
note Cp the corresponding capacitance and refer to it as the connection capacitance. It is admitted that the
capacitance writes Cp = “—'—f,LS, S being the electrode area, e the thickness of the crystal disk, €p the vacuum
permittivity and €, a dimensionless constant depending on the piezoelectric material (see figure 6)

- a charge induced by the piezoelectric effect g,(¢) which is proportional to x(t): g2(t) = yx(t). This effect is
equivalent to adding in parallel to Cp a circuit composed of a resistance R, a coil of inductance L and a capac-
itor of capacitance Cs (see figure 6).

We have therefore q(1) = g1 (1) + q2(1).
We give: €0 =8.85x 10712 Fm~!;¢, =23

2. Recall the link between g, (1), capacitance Cp and the tension V(¢). Find the numerical value of Cp.

3. Using the differential equation satisfied by x(¢), find the differential equation satisfied by g,(¢).

4. Using the equivalent circuit presented in figure 6, find the differential equation satisfied by g,(f) and compare it
to the one obtained in the previous question. Deduce the expression of R, L, C; in terms of m, h, B, y and k.
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Figure 6: Equivalent electrical circuit of the quartz oscillator
Part 2: Experimental study of the resonance of a quartz oscillator

In order to study the sharp resonance of the quartz oscillator, we subject it to AC voltages at different frequencies. We
then measure the amplitude of the current intensity running through the quartz at the various frequencies.The following

study will be conducted in the forced permanent AC regime using complex notations. We have: i() = Lz(i), Z, being the
=q

impedance of the quartz. I is the amplitude of the current running through the quartz and ¢ the phase-shift between
V(1) and i(¢) such that i(¢) = Icos(t +¢) and i(1) = Te/@t+¢),

As seen in the previous part, the quartz can be modeled as a capacitor C,, (the connection capacitance) in parallel
with a series R, L, Cs circuit representing the piezoelectric effect. The latter circuit (i.e. parallel R, L, Cs) is often referred
as the motional circuit and models the electromechanical coupling induced by the piezoelectric effect.

In order to obtain resonance phenomena, we look for angular frequencies w such that the amplitude of i(¢) (i.e. I)
reaches large values, that is to say that ZL;, tends to large values. To find the resonance, we first neglect any dissipative

effect : in the following two questions we will assume R =0 Q.
The figure below then shows a simplified model of the quartz resonator.
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Figure 7: Simplified electrical model of the quartz resonator
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5. Show that Z o the equivalent impedance of dipole AB verifies:
1 . w " P
7 = JCwx —%, with: w; = -'—\/T_ w; and C are constants to be determined in terms of Cp, Cs and L.
e 1_"_: Cy

1
6. Deduce the expression of the frequency for which we should observe resonance of the current intensity. We will
denoteit fi.

Previous questions have shown that the R, L, Cs branch is responsible for the resonance phenomena. In the following
we will then neglect the capacitance Cp, focusing ourselves on the circuit depicted in figure 8.
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Figure 8: Simplified quart model to study resonance phenomenon

The following questions are independent from the previous ones.

Vi
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7. Show that: i(1) = m“%—_—%—)—, with: Q = 5/ & being the quality factor and: w; = 7ic:

The curve of figure 9 shows the evolution of the current intensity amplitude I of i(¢) against the frequency f of the
input voltage V(z). The amplitude of V(¢) is denoted Vp and is worth (0.20 +0.02) V.
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Figure 9: Source: Dieber, Kempf et Markiewicz, BUP n°799, 1997
We also remind that the quality factor Q is defined from: Q = [(—’. fr being the resonance frequency and Af the
bandwidth. We have Af = |fc, - fc,|, fc, and fc, being the two cutoff frequencies.
8. Using the graph of Figure 9, find the value of R together with its uncertainty.
9. Determine the value of Q (without uncertainty). Comment on the value.
In the following we consider the following approximate values: R = 2 kQ, Q =2 x 10* and: w; =2 x 10° rad/s.
10. Give the expression of L and Cg in terms of Q, R and w,.

11. Deduce the value of L (without uncertainty). Comment on the value.



Exercise 3: Hidden dipoles (6 points)

This exercise is an open problem, it is therefore important that one can follow and understand your reasonmg. ‘Your ability
to highlight a question, write an organized reasoning (even without reaching a conclusion) and have a critical look on
your results will be assessed.

With a single resistor, a coil and a capacitor, we form two dipoles D and D,. This dipoles are used to form a second
order filter as shown on the figure below.

Figure 10: Scheme of the unknown filter
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Figure 11: Bode diagram of the unknown filter for the gain in dB, on a semi-log scale.

In DC regime, we measure a current intensity of 1 mA for an input voltage of 3 V.
In AC regime, the filter behaves as a band-pass filter, and the Bode diagram for the gain in decibels is given above.

Question

Identify the dipoles D; and D, by studying the asymptotic behavior at very low and very high frequencies, and de-
termine the values of the resistance, the inductance and the capacitance of the three components.

Data

The transfer function of a band-pass second order filter is:
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with Hy the gain coefficient, wg the characteristic angular frequency and Q quality factor, that can also be defined

using the characteristic and cut-off angular frequencies: Q = I wa“iouml'




