INSA LYON
FIMI — SCAN 2

MATH TEST #1 ON NOVEMBER 4, 2024 - DURATION 1H30

Warnings and Advice

o All documents, calculators or electronic devices, means of communication, are prohibited.

e The grading scale is provided as a guide.

o Presentation, quality of writing, clarity, and precision of reasoning are taken into account in grading.

EXERCISE 1 (7.5 points)
The questions in this exercise are independent of each other.

1) Determine the nature of the following integrals :
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2) Show the convergence and compute /
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in the form —— + ——, where a and b are real numbers to be determined.
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3) Let a € Rand I, = f — arctan (—) dz.
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You may write
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Determine the values of o for which the integral I, is convergent.

4 4) Define the sequences (un),en= and (Vn),en- bY
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V¥n € N¥, un=kza and vnzun—km.
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Show that (tn),cpe and (vn), - are adjacent.
What can be deduced from this?




EXERCISE 2 (6.5 poinis)
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1) Show that the integral I = / 511".;2( ) dt converges.
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The goal of the following questions is to determine its value.
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2) Let z > 0. Define J(z) = / 2 dt, which converges according to the previous question.
€x

+o0 o5 t +0o0 o3
¢ a) Show that / Sm(23 ) dt=3 f 31n(2u) du.
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(We admit the convergence of these integrals).

+ b) Assuming that for any real number ¢, sin®(t) = 3sin(?) ; sin(34)

J(z) = §f:m sin®) gy,

, show that
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3) Let ¢ be the function defined on ]0,+oc by : Vt> 0, p(t) = %_—t
a) Show that ¢ has a finite limit at 0.

Thus, it can be extended by continuily ot 0, and we will still denote by ¢ the function thus
extended, continuous on [0, +oof.

b) Show that
3z _: t 3z
Vz > 0, / Slrtlz()dt: / o(t) dt + In(3).
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~ 4) Deduce the value of I from the previous questions.

EXERCISE 3 (6 poinis)
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1) Show that the integral I,, converges for every n € N*.

~  2) Determine the monotonicity of the sequence (I,),,.n+ and deduce that it converges to a limit £ > 0.
3) Using integration by parts, show that

V€ N*, I = 3n (I — Ing1) .
1 n
4) Determine n—lir—lr—loo (1 + ﬁ) .

® 5) For any n € N*, prove the three inequalities below :
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6) Deduce the value of £.




