INSA LYON

FIMI - SCAN 2

MATH TEST #1 ON NOVEMBER 4, 2024 - DURATION 1H30

Warnings and Advice

- All documents, calculators or electronic devices, means of communication, are prohibited.
- The grading scale is provided as a guide.
- Presentation, quality of writing, clarity, and precision of reasoning are taken into account in grading.

EXERCISE 1 (7.5 points)

The questions in this exercise are independent of each other.

1) Determine the nature of the following integrals:

a)
$$\int_{0}^{+\infty} e^{-\sqrt{t}} (1 + 3t^4) dt$$

b)
$$\int_1^e \frac{t+2}{\ln(t)} \, \mathrm{d}t.$$

2) Show the convergence and compute $\int_4^{+\infty} \frac{1}{x^2 - 9} dx$.

You may write $\frac{1}{x^2-9}$ in the form $\frac{a}{x-3}+\frac{b}{x+3}$, where a and b are real numbers to be determined.

3) Let $\alpha \in \mathbb{R}$ and $I_{\alpha} = \int_{0}^{+\infty} \frac{1}{x^{\alpha}} \arctan\left(\frac{1}{x^{3}}\right) dx$.

Determine the values of α for which the integral I_{α} is convergent.

4 4) Define the sequences $(u_n)_{n\in\mathbb{N}^*}$ and $(v_n)_{n\in\mathbb{N}^*}$ by

$$\forall n \in \mathbb{N}^*, \quad u_n = \sum_{k=0}^n \frac{1}{k!} \text{ and } v_n = u_n + \frac{1}{n!}.$$

Show that $(u_n)_{n\in\mathbb{N}^*}$ and $(v_n)_{n\in\mathbb{N}^*}$ are adjacent.

What can be deduced from this?

EXERCISE 2 (6.5 points)

- 1) Show that the integral $I = \int_{0}^{+\infty} \frac{\sin^{3}(t)}{t^{2}} dt$ converges. The goal of the following questions is to determine its value.
- 2) Let x > 0. Define $J(x) = \int_{-t^2}^{+\infty} \frac{\sin^3(t)}{t^2} dt$, which converges according to the previous question.
 - a) Show that $\int_{-\infty}^{+\infty} \frac{\sin(3t)}{t^2} dt = 3 \int_{3\pi}^{+\infty} \frac{\sin(u)}{u^2} du.$ (We admit the convergence of these integrals).
 - b) Assuming that for any real number t, $\sin^3(t) = \frac{3\sin(t) \sin(3t)}{4}$, show that

$$J(x) = \frac{3}{4} \int_{x}^{3x} \frac{\sin(t)}{t^2} dt.$$

- 3) Let φ be the function defined on $]0, +\infty[$ by : $\forall t > 0, \ \varphi(t) = \frac{\sin(t) t}{t^2}$.
 - a) Show that φ has a finite limit at 0. Thus, it can be extended by continuity at 0, and we will still denote by φ the function thus extended, continuous on $[0, +\infty[$.
 - b) Show that

$$\forall x>0,\; \int_x^{3x} \frac{\sin(t)}{t^2}\,\mathrm{d}t = \int_x^{3x} \varphi(t)\,\mathrm{d}t + \ln(3).$$

4) Deduce the value of I from the previous questions.

EXERCISE 3 (6 points)
For all $n \in \mathbb{N}^*$, let $I_n = \int_0^{+\infty} \frac{1}{(1+t^3)^n} dt$.

- 1) Show that the integral I_n converges for every $n \in \mathbb{N}^*$.
- 2) Determine the monotonicity of the sequence $(I_n)_{n\in\mathbb{N}^*}$ and deduce that it converges to a limit $\ell \geqslant 0$.
 - 3) Using integration by parts, show that

$$\forall n \in \mathbb{N}^*, \ I_n = 3n \left(I_n - I_{n+1} \right).$$

- 4) Determine $\lim_{n \to +\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^n$.
- 5) For any $n \in \mathbb{N}^*$, prove the three inequalities below:

$$\int_{0}^{\frac{1}{\sqrt[6]{n}}} \frac{1}{(1+t^{3})^{n}} dt \leqslant \frac{1}{\sqrt[6]{n}}$$

$$\int_{\frac{1}{\sqrt[6]{n}}}^{1} \frac{1}{(1+t^{3})^{n}} dt \leqslant \frac{1-\frac{1}{\sqrt[6]{n}}}{\left(1+\frac{1}{\sqrt{n}}\right)^{n}}$$

$$\int_{1}^{+\infty} \frac{1}{(1+t^{3})^{n}} dt \leqslant \frac{1}{3n-1}.$$

6) Deduce the value of ℓ .