

1st MNTES exam – Semester 2 April 5th, 2024. Duration: 1.5 h

No document allowed. No mobile phone, no electronic devices (like apple watch). Non-programmable calculator allowed. The proposed grading scale is only indicative.

It is also reminded that the general clarity and cleanness of your paper may also be taken into account.

Exercise 1 (4 points)

Sketch the domain Δ then calculate the integral.

$$\iint_{\Delta} f(x,y) \, dxdy \text{ with } f(x,y) = \frac{1}{1 + x^2 + y^2},$$

and $\Delta = \{(x,y) \in \mathbb{R} \mid 0 \le x \le 1, \ 0 \le y \le 1, \ x^2 + y^2 \le 1\}$. The integral must be first expressed using Cartesian coordinates, then perform a change of variables. (Hint rewrite Δ as normal in x or y to help pose the double integral)

Exercise 2 Yukawa model of the hydrogen atom (7 points)

The diagram of an element of elementary volume (dV) in spherical coordinates is given in Figure 2 (see Annex).

- 1. Complete the diagram in the Annex, explicitly indicating all the terms necessary to derive the expression for dV.
- 2. Show that, for a function $f(\rho)$ depending only on the variable ρ , the integral of $f(\rho)$ over a ball B of radius R, in spherical coordinates, can be expressed as a simple integral

$$\iiint_B f(\rho) \, dV = \int_0^R f(\rho) \cdot 4\pi \rho^2 \, d\rho.$$

3. Application: In Yukawa's hydrogen atom model the volume density of the electron charge is given by

$$\Psi(\rho) = -q \cdot \frac{e^{-\frac{\rho}{a}}}{4\pi a^2 \rho},$$

with ρ the distance to the origin, a a constant having the dimension of a length, and q the constant elementary charge.

(a) Determine the total charge Q contained in a sphere of radius R. For this we will have to use integration by parts to obtain this result. Recall that

$$\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx$$

- (b) What is the value of this integral when R tends to infinity? Justify your answer.
- → (c) According to this model, where is the barycenter of the hydrogen atom's charges?

Exercise 3

Geometry of masses (6.5 points)

Consider a spinner of homogeneous mass density μ , whose shape is shown in Figure 1 (it consists of a cone topped by a spherical cap, both of which are solid). We want to determine the center of inertia (or barycenter G(x, y, z)) of this spinner, as well as the moment of inertia J_{Δ} , with respect to its vertical axis of symmetry Δ . For all calculations, we'll neglect the small cylindrical part at the top of the spinner used to drive it with the fingertips.

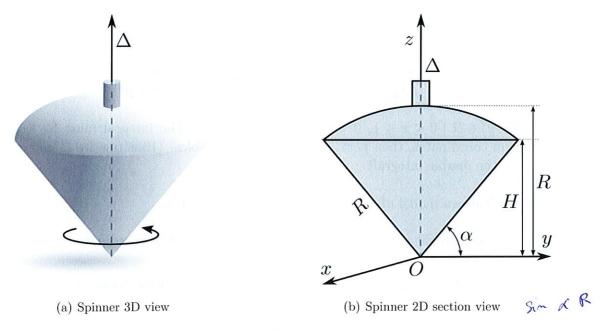


Figure 1: Spinner

- 1. What are the coordinates x_G and y_G of the spinner's center of inertia? Justify your answer.
- 2. Using cylindrical coordinates, show that the $z_{G_{\text{cone}}}$ coordinate of the lower part of the spinner, which has the shape of a half-cone (see Figure 1(b)), can be expressed as

$$z_{G_{\text{cone}}} = \frac{1}{M_{\text{cone}}} \int_{z_{\min}}^{z_{\max}} f(z) \, dz.$$

What is the expression of f(z)? Determine $z_{G_{\text{cone}}}$ as a function of α , μ , R and M_{cone} .

3. Using a calculation similar to the previous one, show that the $z_{G_{\text{cap}}}$ coordinate of the upper part of the spinner in the shape of a spherical cap as a function of \mathbb{R} and R.

$$z_{G_{\text{cap}}} = \frac{1}{M_{\text{cap}}} \cdot \frac{\pi \mu R^4 \cos^4(\alpha)}{4}$$

- 4. Deduce z_G for the whole spinner as a function of M_{cone} , $z_{G_{\text{cone}}}$, M_{cap} and $z_{G_{\text{cap}}}$.
- 5. Using spherical coordinates, show that the expression of J_{Δ} in spherical coordinates can be expressed as

$$J_{\Delta} = C \int_{0}^{R} \int_{\phi_{1}}^{\phi_{2}} \rho^{n} \sin^{m}(\phi) \, d\phi d\rho.$$

Give the expressions for C, the integers n and m, and the values of ϕ_1 and ϕ_2 .