= Q0 B

DT W N = [{ole s B e BN e1]

00 ~1 O U = Lo~

IE Informatique et Société Numérique 2

SCAN - April 2024

INSA

Duration: 1h30

The use of additional documents or calculators is strictly prohibited.

Programs with bad indentation or poorly chosen variable names will be penalized.

Exercise 1 Code reading (3.5pts)

(Q1.1) What will be displayed by the following code ?

1=1[]
2
[

]
or i in range(n):
for j in range(n):
1.append(ixj)
tl.append(1)
t1[0][1]1=5
print(tl)

t
n
1
f

(@Q1.2) What will be displayed by the following code ?

t2 = [[1,2,3]1,18,9,3]]
n=3
for i in range(n):
for j in range(n):
print(t2[i][jl)
print(t2)

(@1.3) What will be displayed by the following code ?

def decrement(a):
a=a-1

def sub(l):
for i in range(len(l)):
decrement(1[i])

def my function(l,i):
1[i] = decrement(Ll[1])

X =2

print(x)

1 =16, 7, 8]
sub(l)

print(1l)

my function(l,1)
print(1l)

Exercise 2 Code correction (2,5pts)

(Q2.1) Identify any potential bugs and the two errors in the documentation of the program

below.
L def find_positions(grid, value)
2 """Searches for the position of each occurrence of ’value’ in grid.
3 Parameters :
4 grid : a list of integers
5 value : the integer being searched for
6 Returns :
7 A 2D list of integers. Each inner list is of size 2 and
8 corresponds to the coordinates of a value, formatted as
9 [line, column]"""
10 res = []
11 for num_line in range(len(grid[0]))
12 for num col in range(len(grid))
13 if grid[num_line] [num col] == value:
14 res.append(num_line)
15 res.append(num_col)
16 return res
17
18 def replace(grid, positions, val)
19 """Stores val in grid at each location indicated in positions.
20 Parameters :
21 grid : a 2D list of integers
22 positions : a 2D list of integers (a list of positions
23 [line, column] valid in grid)
24 val : integer to store
25 Returns : the modified grid """
26 for pos in positions
27 grid[pos[1]][pos[@]] = val
28

28 my 1ist = [[1,2,5.8], [9,58,1.3], [8,2,4, 1], 11,4.9.11]
30 pos = find_positions{my list, 1)

31 replace(my list, pos, 42)

32 print(my list)

Exercise 3 Problem - Sorting of Complex Numbers (14 pts)

Important : The questions at the end of the exercise (in particular 3.4 to 3.6) can be attempted even
if the initial questions were skipped. You can use a function even if you did not provide its algorithm or
code (but its header must have been defined).

Our aim is to study a sorting algorithm that works on complex numbers rather than on integers.
Comparison and ordering To compare and order complex numbers, we will use their norm (or modulus).
For example, if we have the numbers ¢; = —2 + 27 and ¢o = 1 + i, their norm are

o1 = V22 + (277 = 212

and
ool = VITF T2 = 2
Also, as :
lea| < ei]
we will consider that :
co < C]

Note that your sorting algorithm will thus consider two complex numbers as equal if they have the same norm.

Choice of representation for complex numbers To represent complex numbers, we will use lists with
two elements, the first element representing the real part, and the second element the imaginary part. For
example, the numbers ¢, and ¢2 will be represented by :

2

1 cl
2 ¢2

[—2r2]
[(1,11]

no

Sorting by selection For the sorting algorithm, you will use selection sort on integers, whose algorithm is
reminded below :

1 # Function selection_sort(list of values) :

2 # For each index i_pivot in the list

3 # Search for the index i_min of the smallest element starting from the index i_pivot

4 # If necessary, swap the elements at indices i_pivot and i_min

(@3.1} Propose a function display_complex_list that takes a list of complex numbers as a
parameter and displays it exactly in the format specified below (1pt)

The call display_complex_list([[-2,2],[1,-1]1]) should display exactly :
[(<2 +2i) (1 + -1i)]

(@3.2) With the help of the reminder below, propose a functional decomposition of the
sorting algorithm that takes a list of complex numbers as input and sorts it. This
decomposition must include at least 3 functions (not counting sort). (3pts)

Reminder : To perform a functional decomposition, one must :
— identify the functions present in the provided algorithm ;
— for each, provide a definition, a description (docstring}, and an algorithm ;
— apply the functional decomposition to these new algorithms until the algorithm of each function is
trivial.

(@3.3) Implement the sort function from the provided algorithm according to your func-
tional decomposition. Also implement all its sub-functions. You do not need to
manage imports, nor write the docstrings that would have already been written
previously. (6pts)

(Q3.4) Write a function that tests il a list of complex numbers is sorted. (1 pt}

(@3.5) Propose a Python code that performs the following operations using the previously
defined functions. (1 pt)

— Define the list 1 containing the following complex numbers : 1 +0¢, —2 4 14, 6 — 2¢, and 2 — 14;
— Display the list

— Test if 1 is sorted

— If 1 is not sorted, sort the list 1

- Display the list 1

(@3.6) For one of your functions, propose a set of tests covering 4 cases. Explain why
these cases are relevant. (2pts)

